pyRforest: a comprehensive R package for genomic data analysis featuring scikit-learn Random Forests in R.

IF 2.5 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Briefings in Functional Genomics Pub Date : 2025-01-15 DOI:10.1093/bfgp/elae038
Tyler Kolisnik, Faeze Keshavarz-Rahaghi, Rachel V Purcell, Adam N H Smith, Olin K Silander
{"title":"pyRforest: a comprehensive R package for genomic data analysis featuring scikit-learn Random Forests in R.","authors":"Tyler Kolisnik, Faeze Keshavarz-Rahaghi, Rachel V Purcell, Adam N H Smith, Olin K Silander","doi":"10.1093/bfgp/elae038","DOIUrl":null,"url":null,"abstract":"<p><p>Random Forest models are widely used in genomic data analysis and can offer insights into complex biological mechanisms, particularly when features influence the target in interactive, nonlinear, or nonadditive ways. Currently, some of the most efficient Random Forest methods in terms of computational speed are implemented in Python. However, many biologists use R for genomic data analysis, as R offers a unified platform for performing additional statistical analysis and visualization. Here, we present an R package, pyRforest, which integrates Python scikit-learn \"RandomForestClassifier\" algorithms into the R environment. pyRforest inherits the efficient memory management and parallelization of Python, and is optimized for classification tasks on large genomic datasets, such as those from RNA-seq. pyRforest offers several additional capabilities, including a novel rank-based permutation method for biomarker identification. This method can be used to estimate and visualize P-values for individual features, allowing the researcher to identify a subset of features for which there is robust statistical evidence of an effect. In addition, pyRforest includes methods for the calculation and visualization of SHapley Additive exPlanations values. Finally, pyRforest includes support for comprehensive downstream analysis for gene ontology and pathway enrichment. pyRforest thus improves the implementation and interpretability of Random Forest models for genomic data analysis by merging the strengths of Python with R. pyRforest can be downloaded at: https://www.github.com/tkolisnik/pyRforest with an associated vignette at https://github.com/tkolisnik/pyRforest/blob/main/vignettes/pyRforest-vignette.pdf.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735746/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in Functional Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elae038","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Random Forest models are widely used in genomic data analysis and can offer insights into complex biological mechanisms, particularly when features influence the target in interactive, nonlinear, or nonadditive ways. Currently, some of the most efficient Random Forest methods in terms of computational speed are implemented in Python. However, many biologists use R for genomic data analysis, as R offers a unified platform for performing additional statistical analysis and visualization. Here, we present an R package, pyRforest, which integrates Python scikit-learn "RandomForestClassifier" algorithms into the R environment. pyRforest inherits the efficient memory management and parallelization of Python, and is optimized for classification tasks on large genomic datasets, such as those from RNA-seq. pyRforest offers several additional capabilities, including a novel rank-based permutation method for biomarker identification. This method can be used to estimate and visualize P-values for individual features, allowing the researcher to identify a subset of features for which there is robust statistical evidence of an effect. In addition, pyRforest includes methods for the calculation and visualization of SHapley Additive exPlanations values. Finally, pyRforest includes support for comprehensive downstream analysis for gene ontology and pathway enrichment. pyRforest thus improves the implementation and interpretability of Random Forest models for genomic data analysis by merging the strengths of Python with R. pyRforest can be downloaded at: https://www.github.com/tkolisnik/pyRforest with an associated vignette at https://github.com/tkolisnik/pyRforest/blob/main/vignettes/pyRforest-vignette.pdf.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
pyRforest:用于基因组数据分析的综合性 R 软件包,采用 R 中的 scikit-learn 随机森林技术。
随机森林模型被广泛应用于基因组数据分析,并能深入揭示复杂的生物机制,尤其是当特征以交互、非线性或非相加的方式影响目标时。目前,一些计算速度最快的随机森林方法是用 Python 实现的。然而,许多生物学家使用 R 进行基因组数据分析,因为 R 提供了一个统一的平台来执行额外的统计分析和可视化。pyRforest 继承了 Python 的高效内存管理和并行化功能,并针对大型基因组数据集(如 RNA-seq 数据集)上的分类任务进行了优化。这种方法可用于估算和直观显示单个特征的 P 值,使研究人员能够识别出有可靠统计证据表明存在效应的特征子集。此外,pyRforest 还包括 SHapley Additive exPlanations 值的计算和可视化方法。pyRforest 结合了 Python 和 R 的优势,从而改进了用于基因组数据分析的随机森林模型的实现和可解释性。pyRforest 的下载地址为:https://www.github.com/tkolisnik/pyRforest,相关的 vignette 下载地址为:https://github.com/tkolisnik/pyRforest/blob/main/vignettes/pyRforest-vignette.pdf。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Briefings in Functional Genomics
Briefings in Functional Genomics BIOTECHNOLOGY & APPLIED MICROBIOLOGY-GENETICS & HEREDITY
CiteScore
6.30
自引率
2.50%
发文量
37
审稿时长
6-12 weeks
期刊介绍: Briefings in Functional Genomics publishes high quality peer reviewed articles that focus on the use, development or exploitation of genomic approaches, and their application to all areas of biological research. As well as exploring thematic areas where these techniques and protocols are being used, articles review the impact that these approaches have had, or are likely to have, on their field. Subjects covered by the Journal include but are not restricted to: the identification and functional characterisation of coding and non-coding features in genomes, microarray technologies, gene expression profiling, next generation sequencing, pharmacogenomics, phenomics, SNP technologies, transgenic systems, mutation screens and genotyping. Articles range in scope and depth from the introductory level to specific details of protocols and analyses, encompassing bacterial, fungal, plant, animal and human data. The editorial board welcome the submission of review articles for publication. Essential criteria for the publication of papers is that they do not contain primary data, and that they are high quality, clearly written review articles which provide a balanced, highly informative and up to date perspective to researchers in the field of functional genomics.
期刊最新文献
Systematic analysis of the transcriptional landscape of melanoma reveals drug-target expression plasticity. Exploring the impact of N4-acetylcytidine modification in RNA on non-neoplastic disease: unveiling its role in pathogenesis and therapeutic opportunities. Crosstalk between genomic variants and DNA methylation in FLT3 mutant acute myeloid leukemia. Beyond the hype: using AI, big data, wearable devices, and the internet of things for high-throughput livestock phenotyping. Environmental community transcriptomics: strategies and struggles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1