Farhad Rezazadeh;Sergio Barrachina-Muñoz;Hatim Chergui;Josep Mangues;Mehdi Bennis;Dusit Niyato;Houbing Song;Lingjia Liu
{"title":"Toward Explainable Reasoning in 6G: A Proof of Concept Study on Radio Resource Allocation","authors":"Farhad Rezazadeh;Sergio Barrachina-Muñoz;Hatim Chergui;Josep Mangues;Mehdi Bennis;Dusit Niyato;Houbing Song;Lingjia Liu","doi":"10.1109/OJCOMS.2024.3466225","DOIUrl":null,"url":null,"abstract":"The move toward artificial intelligence (AI)-native sixth-generation (6G) networks has put more emphasis on the importance of explainability and trustworthiness in network management operations, especially for mission-critical use-cases. Such desired trust transcends traditional post-hoc explainable AI (XAI) methods to using contextual explanations for guiding the learning process in an in-hoc way. This paper proposes a novel graph reinforcement learning (GRL) framework named TANGO which relies on a symbolic subsystem. It consists of a Bayesian-graph neural network (GNN) Explainer, whose outputs, in terms of edge/node importance and uncertainty, are periodically translated to a logical GRL reward function. This adjustment is accomplished through defined symbolic reasoning rules within a Reasoner. Considering a real-world testbed proof-of-concept (PoC), a gNodeB (gNB) radio resource allocation problem is formulated, which aims to minimize under- and over-provisioning of physical resource blocks (PRBs) while penalizing decisions emanating from the uncertain and less important edge-nodes relations. Our findings reveal that the proposed in-hoc explainability solution significantly expedites convergence compared to standard GRL baseline and other benchmarks in the deep reinforcement learning (DRL) domain. The experiment evaluates performance in AI, complexity, energy consumption, robustness, network, scalability, and explainability metrics. Specifically, the results show that TANGO achieves a noteworthy accuracy of 96.39% in terms of optimal PRB allocation in inference phase, outperforming the baseline by \n<inline-formula> <tex-math>$1.22\\times $ </tex-math></inline-formula>\n.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"5 ","pages":"6239-6260"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10689363","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10689363/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The move toward artificial intelligence (AI)-native sixth-generation (6G) networks has put more emphasis on the importance of explainability and trustworthiness in network management operations, especially for mission-critical use-cases. Such desired trust transcends traditional post-hoc explainable AI (XAI) methods to using contextual explanations for guiding the learning process in an in-hoc way. This paper proposes a novel graph reinforcement learning (GRL) framework named TANGO which relies on a symbolic subsystem. It consists of a Bayesian-graph neural network (GNN) Explainer, whose outputs, in terms of edge/node importance and uncertainty, are periodically translated to a logical GRL reward function. This adjustment is accomplished through defined symbolic reasoning rules within a Reasoner. Considering a real-world testbed proof-of-concept (PoC), a gNodeB (gNB) radio resource allocation problem is formulated, which aims to minimize under- and over-provisioning of physical resource blocks (PRBs) while penalizing decisions emanating from the uncertain and less important edge-nodes relations. Our findings reveal that the proposed in-hoc explainability solution significantly expedites convergence compared to standard GRL baseline and other benchmarks in the deep reinforcement learning (DRL) domain. The experiment evaluates performance in AI, complexity, energy consumption, robustness, network, scalability, and explainability metrics. Specifically, the results show that TANGO achieves a noteworthy accuracy of 96.39% in terms of optimal PRB allocation in inference phase, outperforming the baseline by
$1.22\times $
.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.