{"title":"Exploring the Effect of Mathematics Skills on Student Performance in Physics Problem-Solving: A Structural Equation Modeling Analysis","authors":"Tong Tong, Feipeng Pi, Siyan Zheng, Yi Zhong, Xiaochun Lin, Yajun Wei","doi":"10.1007/s11165-024-10201-5","DOIUrl":null,"url":null,"abstract":"<p>Students’ success in physics problem-solving extends beyond conceptual knowledge of physics, relying significantly on their mathematics skills. Understanding the specific contributions of different mathematics skills to physics problem-solving can offer valuable insights for enhancing physics education. Yet such studies are rare, particularly at the high school level. This study addresses the underexplored area of this topic in secondary education by investigating the associations between physics problem-solving performance using a robust methodological framework. We applied exploratory factor analysis (EFA) to identify latent sub-mathmetics skills relevant to physics problem-solving and employed structural equation modeling (SEM) to examine the causal impact of these skills on students’ performance in physics. The study analyzed data from a municipal-wide assessment involving 1,878 grade 12 students in Southern China. The results demonstrate that mathematics skills impacting high school students’ physics problem-solving performance can be categorized into two sub skills, algebraic skills and geometric skills. It also indicates that algebraic skills have a stronger direct effect on physics problem-solving performance compared to geometric skills in high school setting. These findings suggest that integrating focused algebraic training within physics education can significantly improve student outcomes in STEM fields. We recommend that educators design curricula and instructional strategies that emphasize the development of algebraic skills necessary for solving complex physics problems. Additionally, these findings have important implications for policymakers, who should consider integrating targeted mathematics training within physics curricula to foster interdisciplinary learning and better prepare students for challenges in STEM education.</p>","PeriodicalId":47988,"journal":{"name":"Research in Science Education","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Science Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1007/s11165-024-10201-5","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
Students’ success in physics problem-solving extends beyond conceptual knowledge of physics, relying significantly on their mathematics skills. Understanding the specific contributions of different mathematics skills to physics problem-solving can offer valuable insights for enhancing physics education. Yet such studies are rare, particularly at the high school level. This study addresses the underexplored area of this topic in secondary education by investigating the associations between physics problem-solving performance using a robust methodological framework. We applied exploratory factor analysis (EFA) to identify latent sub-mathmetics skills relevant to physics problem-solving and employed structural equation modeling (SEM) to examine the causal impact of these skills on students’ performance in physics. The study analyzed data from a municipal-wide assessment involving 1,878 grade 12 students in Southern China. The results demonstrate that mathematics skills impacting high school students’ physics problem-solving performance can be categorized into two sub skills, algebraic skills and geometric skills. It also indicates that algebraic skills have a stronger direct effect on physics problem-solving performance compared to geometric skills in high school setting. These findings suggest that integrating focused algebraic training within physics education can significantly improve student outcomes in STEM fields. We recommend that educators design curricula and instructional strategies that emphasize the development of algebraic skills necessary for solving complex physics problems. Additionally, these findings have important implications for policymakers, who should consider integrating targeted mathematics training within physics curricula to foster interdisciplinary learning and better prepare students for challenges in STEM education.
期刊介绍:
2020 Five-Year Impact Factor: 4.021
2020 Impact Factor: 5.439
Ranking: 107/1319 (Education) – Scopus
2020 CiteScore 34.7 – Scopus
Research in Science Education (RISE ) is highly regarded and widely recognised as a leading international journal for the promotion of scholarly science education research that is of interest to a wide readership.
RISE publishes scholarly work that promotes science education research in all contexts and at all levels of education. This intention is aligned with the goals of Australasian Science Education Research Association (ASERA), the association connected with the journal.
You should consider submitting your manscript to RISE if your research:
Examines contexts such as early childhood, primary, secondary, tertiary, workplace, and informal learning as they relate to science education; and
Advances our knowledge in science education research rather than reproducing what we already know.
RISE will consider scholarly works that explore areas such as STEM, health, environment, cognitive science, neuroscience, psychology and higher education where science education is forefronted.
The scholarly works of interest published within RISE reflect and speak to a diversity of opinions, approaches and contexts. Additionally, the journal’s editorial team welcomes a diversity of form in relation to science education-focused submissions. With this in mind, RISE seeks to publish empirical research papers.
Empircal contributions are:
Theoretically or conceptually grounded;
Relevant to science education theory and practice;
Highlight limitations of the study; and
Identify possible future research opportunities.
From time to time, we commission independent reviewers to undertake book reviews of recent monographs, edited collections and/or textbooks.
Before you submit your manuscript to RISE, please consider the following checklist. Your paper is:
No longer than 6000 words, including references.
Sufficiently proof read to ensure strong grammar, syntax, coherence and good readability;
Explicitly stating the significant and/or innovative contribution to the body of knowledge in your field in science education;
Internationalised in the sense that your work has relevance beyond your context to a broader audience; and
Making a contribution to the ongoing conversation by engaging substantively with prior research published in RISE.
While we encourage authors to submit papers to a maximum length of 6000 words, in rare cases where the authors make a persuasive case that a work makes a highly significant original contribution to knowledge in science education, the editors may choose to publish longer works.