{"title":"Graphene quantum dots as nanotherapeutic agents for triple-negative breast cancer: Insights from 3D tumor models","authors":"Mohammad Suhaan Dar , Pitcheri Rosaiah , Jarsangi Bhagyalakshmi , Satyaprakash Ahirwar , Ahmaduddin Khan , Ramasamy Tamizhselvi , Vasudeva Reddy Minnam Reddy , Arunkumar Palaniappan , Niroj Kumar Sahu","doi":"10.1016/j.ccr.2024.216247","DOIUrl":null,"url":null,"abstract":"<div><div>Chemotherapy is a fundamental modality in the treatment of breast cancer (BC), employed across both early and advanced stages. Triple-negative breast cancer (TNBC), known for its aggressive behavior and propensity for metastasis, presents significant treatment challenges due to its resistance to standard chemotherapeutic approaches. Identifying molecular targets for TNBC is imperative, especially in the absence of specifically targeted drugs and given the generally poor prognosis of the disease. Although nanomedicine has substantially grown, incorporating a variety of clinical applications, challenges such as dose-limiting toxicities and limited patient response rates continue to hinder its broader application. Over the past decade, graphene quantum dots (GQDs) have emerged as a promising category of luminescent materials, characterized by their outstanding optoelectronic properties, and their highly tunable structures and surface functionalities. These attributes make GQDs ideal candidates as drug carriers, facilitating straightforward functionalization, heightened chemotherapy sensitivity, and substantial drug loading capacities. This review provides a thorough exploration of recent advancements in GQDs applied to BC, with a specific focus on TNBC. It delves into the dynamics of breast cancer, emphasizing the diagnostic and therapeutic challenges of TNBC and the innovative potential of GQDs in this context. Furthermore, it discusses various GQD-based therapeutic strategies that hold promise for enhancing outcomes in breast cancer treatment, potentially leading to transformative advancements in the management of TNBC. Additionally, this review incorporates insights from three-dimensional (3D) tumor models, offering a comprehensive perspective on GQD-mediated interventions in breast cancer therapy.</div></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"523 ","pages":"Article 216247"},"PeriodicalIF":20.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854524005939","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Chemotherapy is a fundamental modality in the treatment of breast cancer (BC), employed across both early and advanced stages. Triple-negative breast cancer (TNBC), known for its aggressive behavior and propensity for metastasis, presents significant treatment challenges due to its resistance to standard chemotherapeutic approaches. Identifying molecular targets for TNBC is imperative, especially in the absence of specifically targeted drugs and given the generally poor prognosis of the disease. Although nanomedicine has substantially grown, incorporating a variety of clinical applications, challenges such as dose-limiting toxicities and limited patient response rates continue to hinder its broader application. Over the past decade, graphene quantum dots (GQDs) have emerged as a promising category of luminescent materials, characterized by their outstanding optoelectronic properties, and their highly tunable structures and surface functionalities. These attributes make GQDs ideal candidates as drug carriers, facilitating straightforward functionalization, heightened chemotherapy sensitivity, and substantial drug loading capacities. This review provides a thorough exploration of recent advancements in GQDs applied to BC, with a specific focus on TNBC. It delves into the dynamics of breast cancer, emphasizing the diagnostic and therapeutic challenges of TNBC and the innovative potential of GQDs in this context. Furthermore, it discusses various GQD-based therapeutic strategies that hold promise for enhancing outcomes in breast cancer treatment, potentially leading to transformative advancements in the management of TNBC. Additionally, this review incorporates insights from three-dimensional (3D) tumor models, offering a comprehensive perspective on GQD-mediated interventions in breast cancer therapy.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.