Integrated large-scale metagenome assembly and multi-kingdom network analyses identify sex differences in the human nasal microbiome

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Genome Biology Pub Date : 2024-10-08 DOI:10.1186/s13059-024-03389-2
Yanmei Ju, Zhe Zhang, Mingliang Liu, Shutian Lin, Qiang Sun, Zewei Song, Weiting Liang, Xin Tong, Zhuye Jie, Haorong Lu, Kaiye Cai, Peishan Chen, Xin Jin, Wenwei Zhang, Xun Xu, Huanming Yang, Jian Wang, Yong Hou, Liang Xiao, Huijue Jia, Tao Zhang, Ruijin Guo
{"title":"Integrated large-scale metagenome assembly and multi-kingdom network analyses identify sex differences in the human nasal microbiome","authors":"Yanmei Ju, Zhe Zhang, Mingliang Liu, Shutian Lin, Qiang Sun, Zewei Song, Weiting Liang, Xin Tong, Zhuye Jie, Haorong Lu, Kaiye Cai, Peishan Chen, Xin Jin, Wenwei Zhang, Xun Xu, Huanming Yang, Jian Wang, Yong Hou, Liang Xiao, Huijue Jia, Tao Zhang, Ruijin Guo","doi":"10.1186/s13059-024-03389-2","DOIUrl":null,"url":null,"abstract":"Respiratory diseases impose an immense health burden worldwide. Epidemiological studies have revealed extensive disparities in the incidence and severity of respiratory tract infections between men and women. It has been hypothesized that there might also be a nasal microbiome axis contributing to the observed sex disparities. Here, we study the nasal microbiome of healthy young adults in the largest cohort to date with 1593 individuals, using shotgun metagenomic sequencing. We compile the most comprehensive reference catalog for the nasal bacterial community containing 4197 metagenome-assembled genomes and integrate the mycobiome, to provide a valuable resource and a more holistic perspective for the understudied human nasal microbiome. We systematically evaluate sex differences and reveal extensive sex-specific features in both taxonomic and functional levels in the nasal microbiome. Through network analyses, we capture markedly higher ecological stability and antagonistic potentials in the female nasal microbiome compared to the male’s. The analysis of the keystone bacteria reveals that the sex-dependent evolutionary characteristics might have contributed to these differences. In summary, we construct the most comprehensive catalog of metagenome-assembled-genomes for the nasal bacterial community to provide a valuable resource for the understudied human nasal microbiome. On top of that, comparative analysis in relative abundance and microbial co-occurrence networks identify extensive sex differences in the respiratory tract community, which may help to further our understanding of the observed sex disparities in the respiratory diseases.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"122 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03389-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Respiratory diseases impose an immense health burden worldwide. Epidemiological studies have revealed extensive disparities in the incidence and severity of respiratory tract infections between men and women. It has been hypothesized that there might also be a nasal microbiome axis contributing to the observed sex disparities. Here, we study the nasal microbiome of healthy young adults in the largest cohort to date with 1593 individuals, using shotgun metagenomic sequencing. We compile the most comprehensive reference catalog for the nasal bacterial community containing 4197 metagenome-assembled genomes and integrate the mycobiome, to provide a valuable resource and a more holistic perspective for the understudied human nasal microbiome. We systematically evaluate sex differences and reveal extensive sex-specific features in both taxonomic and functional levels in the nasal microbiome. Through network analyses, we capture markedly higher ecological stability and antagonistic potentials in the female nasal microbiome compared to the male’s. The analysis of the keystone bacteria reveals that the sex-dependent evolutionary characteristics might have contributed to these differences. In summary, we construct the most comprehensive catalog of metagenome-assembled-genomes for the nasal bacterial community to provide a valuable resource for the understudied human nasal microbiome. On top of that, comparative analysis in relative abundance and microbial co-occurrence networks identify extensive sex differences in the respiratory tract community, which may help to further our understanding of the observed sex disparities in the respiratory diseases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
综合大规模元基因组组装和多王国网络分析发现人类鼻腔微生物组的性别差异
呼吸道疾病给全世界造成了巨大的健康负担。流行病学研究显示,男女在呼吸道感染的发病率和严重程度上存在巨大差异。据推测,鼻腔微生物组轴也可能是造成所观察到的性别差异的原因之一。在这里,我们利用霰弹枪元基因组测序技术,对迄今为止最大的 1593 名健康年轻人的鼻腔微生物组进行了研究。我们为鼻腔细菌群落编制了最全面的参考目录,其中包含 4197 个元基因组组装的基因组,并整合了真菌生物群,为研究不足的人类鼻腔微生物群提供了宝贵的资源和更全面的视角。我们系统地评估了性别差异,并揭示了鼻腔微生物组在分类学和功能水平上广泛的性别特异性特征。通过网络分析,我们发现女性鼻腔微生物组的生态稳定性和拮抗潜力明显高于男性。对关键细菌的分析表明,性别依赖性进化特征可能是造成这些差异的原因。总之,我们为鼻腔细菌群落构建了最全面的元基因组组装基因组目录,为研究不足的人类鼻腔微生物群落提供了宝贵的资源。此外,相对丰度和微生物共存网络的比较分析发现了呼吸道群落中广泛的性别差异,这可能有助于我们进一步了解呼吸道疾病中观察到的性别差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
期刊最新文献
Hierarchical annotation of eQTLs by H-eQTL enables identification of genes with cell type-divergent regulation Publisher Correction: Tagging large CNV blocks in wheat boosts digitalization of germplasm resources by ultra-low-coverage sequencing The genomic portrait of the Picene culture provides new insights into the Italic Iron Age and the legacy of the Roman Empire in Central Italy scStateDynamics: deciphering the drug-responsive tumor cell state dynamics by modeling single-cell level expression changes Considerations in the search for epistasis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1