Cycling of labile and recalcitrant carboxyl-rich alicyclic molecules and carbohydrates in Baffin Bay

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-10-09 DOI:10.1038/s41467-024-53132-5
Kayla McKee, Hussain Abdulla, Lauren O’Reilly, Brett D. Walker
{"title":"Cycling of labile and recalcitrant carboxyl-rich alicyclic molecules and carbohydrates in Baffin Bay","authors":"Kayla McKee, Hussain Abdulla, Lauren O’Reilly, Brett D. Walker","doi":"10.1038/s41467-024-53132-5","DOIUrl":null,"url":null,"abstract":"<p>Marine dissolved organic matter (DOM) is an important, actively cycling carbon reservoir (662 GtC). However, the chemical structure and cycling of DOM within rapidly warming, polar environments remains largely unconstrained. Previous studies have shown rapid surface cycling of carbohydrates as biologically-labile DOM (LDOM). Conversely, carboxyl-rich alicyclic molecules (CRAM) are often used as examples of biologically-recalcitrant DOM (RDOM). Traditional DOM isolation methods (e.g., ultrafiltration (10–30% of DOM) and solid-phase extraction (40–60% of DOM) induce chemical-, size- and compositional-bias – complicating inferences to total DOM cycling. Here, we use a total DOM proton (<sup>1</sup>H) nuclear magnetic resonance (NMR) spectroscopy method to show carbohydrates and CRAM have high concentrations in the surface ocean and low concentrations at depth in Baffin Bay. Between 21–43% of surface CRAM is removed at depth. These results suggest both CRAM and carbohydrates are major LDOM constituents – contradicting the existing CRAM cycling paradigm and further constraining the long-term persistence of deep ocean DOM.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"34 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53132-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Marine dissolved organic matter (DOM) is an important, actively cycling carbon reservoir (662 GtC). However, the chemical structure and cycling of DOM within rapidly warming, polar environments remains largely unconstrained. Previous studies have shown rapid surface cycling of carbohydrates as biologically-labile DOM (LDOM). Conversely, carboxyl-rich alicyclic molecules (CRAM) are often used as examples of biologically-recalcitrant DOM (RDOM). Traditional DOM isolation methods (e.g., ultrafiltration (10–30% of DOM) and solid-phase extraction (40–60% of DOM) induce chemical-, size- and compositional-bias – complicating inferences to total DOM cycling. Here, we use a total DOM proton (1H) nuclear magnetic resonance (NMR) spectroscopy method to show carbohydrates and CRAM have high concentrations in the surface ocean and low concentrations at depth in Baffin Bay. Between 21–43% of surface CRAM is removed at depth. These results suggest both CRAM and carbohydrates are major LDOM constituents – contradicting the existing CRAM cycling paradigm and further constraining the long-term persistence of deep ocean DOM.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
巴芬湾易变和难变富含羧基的脂环族分子和碳水化合物的循环
海洋溶解有机物(DOM)是一个重要的、积极循环的碳库(662 GtC)。然而,在迅速变暖的极地环境中,溶解有机物的化学结构和循环在很大程度上仍未受到制约。以前的研究表明,碳水化合物作为生物可亲和性 DOM(LDOM)在地表快速循环。相反,富含羧基的脂环族分子(CRAM)通常被用作生物可恢复 DOM(RDOM)的例子。传统的 DOM 分离方法(如超滤法(分离 10-30% 的 DOM)和固相萃取法(分离 40-60% 的 DOM)会导致化学、大小和成分偏差,从而使 DOM 总循环的推断变得复杂。在这里,我们使用一种总 DOM 质子(1H)核磁共振(NMR)光谱方法,显示碳水化合物和 CRAM 在巴芬湾表层海洋中浓度较高,而在深海中浓度较低。21-43% 的表层 CRAM 在深海被清除。这些结果表明,CRAM 和碳水化合物都是 LDOM 的主要成分--这与现有的 CRAM 循环模式相矛盾,并进一步限制了深海 DOM 的长期存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Ants integrate proprioception as well as visual context and efference copies to make robust predictions Probabilistic photonic computing with chaotic light Dynamic anti-correlations of water hydrogen bonds Holistic numerical simulation of a quenching process on a real-size multifilamentary superconducting coil Selective light-driven methane oxidation to ethanol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1