Holistic numerical simulation of a quenching process on a real-size multifilamentary superconducting coil

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-12-01 DOI:10.1038/s41467-024-54406-8
Cun Xue, Han-Xi Ren, Peng Jia, Qing-Yu Wang, Wei Liu, Xian-Jin Ou, Liang-Ting Sun, Alejandro V. Silhanek
{"title":"Holistic numerical simulation of a quenching process on a real-size multifilamentary superconducting coil","authors":"Cun Xue, Han-Xi Ren, Peng Jia, Qing-Yu Wang, Wei Liu, Xian-Jin Ou, Liang-Ting Sun, Alejandro V. Silhanek","doi":"10.1038/s41467-024-54406-8","DOIUrl":null,"url":null,"abstract":"<p>Superconductors play a crucial role in the advancement of high-field electromagnets. Unfortunately, their performance can be compromised by thermomagnetic instabilities, wherein the interplay of rapid magnetic and slow heat diffusion can result in catastrophic flux jumps, eventually leading to irreversible damage. This issue has long plagued high-<i>J</i><sub><i>c</i></sub> Nb<sub>3</sub>Sn wires at the core of high-field magnets. In this study, we introduce a large-scale GPU-optimized algorithm aimed at tackling the complex intertwined effects of electromagnetism, heating, and strain acting concomitantly during the quenching process of superconducting coils. We validate our model by conducting comparisons with magnetization measurements obtained from short multifilamentary Nb<sub>3</sub>Sn wires and further experimental tests conducted on solenoid coils while subject to ramping transport currents. Furthermore, leveraging our developed numerical algorithm, we unveil the dynamic propagation mechanisms underlying thermomagnetic instabilities (including flux jumps and quenches) within the coils. Remarkably, our findings reveal that the velocity field of flux jumps and quenches within the coil is correlated with the cumulated Joule heating over a time interval rather than solely being dependent on instantaneous Joule heating power or maximum temperature. These insights have the potential to optimize the design of next-generation superconducting magnets, thereby directly influencing a wide array of technologically relevant and multidisciplinary applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"81 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54406-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Superconductors play a crucial role in the advancement of high-field electromagnets. Unfortunately, their performance can be compromised by thermomagnetic instabilities, wherein the interplay of rapid magnetic and slow heat diffusion can result in catastrophic flux jumps, eventually leading to irreversible damage. This issue has long plagued high-Jc Nb3Sn wires at the core of high-field magnets. In this study, we introduce a large-scale GPU-optimized algorithm aimed at tackling the complex intertwined effects of electromagnetism, heating, and strain acting concomitantly during the quenching process of superconducting coils. We validate our model by conducting comparisons with magnetization measurements obtained from short multifilamentary Nb3Sn wires and further experimental tests conducted on solenoid coils while subject to ramping transport currents. Furthermore, leveraging our developed numerical algorithm, we unveil the dynamic propagation mechanisms underlying thermomagnetic instabilities (including flux jumps and quenches) within the coils. Remarkably, our findings reveal that the velocity field of flux jumps and quenches within the coil is correlated with the cumulated Joule heating over a time interval rather than solely being dependent on instantaneous Joule heating power or maximum temperature. These insights have the potential to optimize the design of next-generation superconducting magnets, thereby directly influencing a wide array of technologically relevant and multidisciplinary applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Ants integrate proprioception as well as visual context and efference copies to make robust predictions Probabilistic photonic computing with chaotic light Dynamic anti-correlations of water hydrogen bonds Holistic numerical simulation of a quenching process on a real-size multifilamentary superconducting coil Selective light-driven methane oxidation to ethanol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1