{"title":"Recent trends in the elucidation of complex triterpene biosynthetic pathways in horticultural trees","authors":"Sandeep Dinday","doi":"10.1093/hr/uhae254","DOIUrl":null,"url":null,"abstract":"Triterpene (C30 isoprene compounds) represents the most structurally diverse class of natural products and has been extensively exploited in the food, medicine and industrial sectors. Decades of research on medicinal triterpene biosynthetic pathways have revealed their roles in stress tolerance and shaping microbiota. However, the biological function and mechanism of triterpenes are not fully identified. Even this scientific window narrows down for horticultural trees. The lack of knowledge and a scalable production system limits the discovery of triterpene pathways. Recent synthetic biology research revealed several important biosynthetic pathways that define their roles and address many societal sustainability challenges. Here, I review the chemical diversity and biosynthetic enzymes involved in triterpene biosynthesis of horticultural trees. This review also outlines the integrated Design-Build-Test-Learn (DBTL) pipelines for the discovery, characterization and optimization of triterpene biosynthetic pathways. Further, these DBTL components share many fundamental and technical difficulties, highlighting opportunities for interdisciplinary collaboration between researchers worldwide. This advancement opens up unprecedented opportunities for the bioengineering of triterpene compounds towards development and scaleup processes.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"10 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhae254","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Triterpene (C30 isoprene compounds) represents the most structurally diverse class of natural products and has been extensively exploited in the food, medicine and industrial sectors. Decades of research on medicinal triterpene biosynthetic pathways have revealed their roles in stress tolerance and shaping microbiota. However, the biological function and mechanism of triterpenes are not fully identified. Even this scientific window narrows down for horticultural trees. The lack of knowledge and a scalable production system limits the discovery of triterpene pathways. Recent synthetic biology research revealed several important biosynthetic pathways that define their roles and address many societal sustainability challenges. Here, I review the chemical diversity and biosynthetic enzymes involved in triterpene biosynthesis of horticultural trees. This review also outlines the integrated Design-Build-Test-Learn (DBTL) pipelines for the discovery, characterization and optimization of triterpene biosynthetic pathways. Further, these DBTL components share many fundamental and technical difficulties, highlighting opportunities for interdisciplinary collaboration between researchers worldwide. This advancement opens up unprecedented opportunities for the bioengineering of triterpene compounds towards development and scaleup processes.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.