Khatab Abdalla, Larissa Schierling, Yue Sun, Max A. Schuchardt, Anke Jentsch, Thomas Deola, Peter Wolff, Ralf Kiese, Eva Lehndorff, Johanna Pausch, Nele Meyer
{"title":"Temperature sensitivity of soil respiration declines with climate warming in subalpine and alpine grassland soils","authors":"Khatab Abdalla, Larissa Schierling, Yue Sun, Max A. Schuchardt, Anke Jentsch, Thomas Deola, Peter Wolff, Ralf Kiese, Eva Lehndorff, Johanna Pausch, Nele Meyer","doi":"10.1007/s10533-024-01179-3","DOIUrl":null,"url":null,"abstract":"<div><p>Warming as a climate change phenomenon affects soil organic matter dynamics, especially in high elevation ecosystems. However, our understanding of the controls of soil organic matter mineralization and dynamics remains limited, particularly in alpine (above treeline) and subalpine (below treeline) grassland ecosystems. Here, we investigated how downslope (warming) and upslope (cooling) translocations, in a 5-years reciprocal transplanting experiment, affects soil respiration and its temperature sensitivity (Q10), soil aggregation, and soil organic matter carbon (C) and nitrogen (N) composition (C/N ratio). Downslope translocation of the alpine (2440 m a.s.l.) and subalpine (1850 m a.s.l.) to the lowland site (350 m a.s.l.) resulted in a temperature change during the growing seasons of + 4.4K and + 3.3K, respectively. Warming of alpine soils (+ 4.4K) reduced soil organic carbon (SOC) content by 32%, which was accompanied by a significant decrease of soil macroaggregates. Macroaggregate breakdown induced an increased respiration quotient (qCO<sub>2</sub>) by 27% following warming of alpine soils. The increase in qCO<sub>2</sub> respiration was associated with a significant decrease (from 2.84 ± 0.05 to 2.46 ± 0.05) in Q10, and a change in soil organic matter composition (lower C/N ratios). Cooling did not show the opposite patterns to warming, implying that other mechanisms, such as plant and microbial community shifts and adaptation, were involved. This study highlights the important role of SOC degradability in regulating the temperature response of soil organic matter mineralization. To predict the adverse effect of warming on soil CO<sub>2</sub> release and, consequently, its negative feedback on climate change, a comprehensive understanding of the mechanisms of C storage and turnover is needed, especially at high elevations in the Alps that are particularly affected by rising temperatures.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"167 11","pages":"1453 - 1467"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01179-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-024-01179-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Warming as a climate change phenomenon affects soil organic matter dynamics, especially in high elevation ecosystems. However, our understanding of the controls of soil organic matter mineralization and dynamics remains limited, particularly in alpine (above treeline) and subalpine (below treeline) grassland ecosystems. Here, we investigated how downslope (warming) and upslope (cooling) translocations, in a 5-years reciprocal transplanting experiment, affects soil respiration and its temperature sensitivity (Q10), soil aggregation, and soil organic matter carbon (C) and nitrogen (N) composition (C/N ratio). Downslope translocation of the alpine (2440 m a.s.l.) and subalpine (1850 m a.s.l.) to the lowland site (350 m a.s.l.) resulted in a temperature change during the growing seasons of + 4.4K and + 3.3K, respectively. Warming of alpine soils (+ 4.4K) reduced soil organic carbon (SOC) content by 32%, which was accompanied by a significant decrease of soil macroaggregates. Macroaggregate breakdown induced an increased respiration quotient (qCO2) by 27% following warming of alpine soils. The increase in qCO2 respiration was associated with a significant decrease (from 2.84 ± 0.05 to 2.46 ± 0.05) in Q10, and a change in soil organic matter composition (lower C/N ratios). Cooling did not show the opposite patterns to warming, implying that other mechanisms, such as plant and microbial community shifts and adaptation, were involved. This study highlights the important role of SOC degradability in regulating the temperature response of soil organic matter mineralization. To predict the adverse effect of warming on soil CO2 release and, consequently, its negative feedback on climate change, a comprehensive understanding of the mechanisms of C storage and turnover is needed, especially at high elevations in the Alps that are particularly affected by rising temperatures.
期刊介绍:
Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.