{"title":"The Enteric Bacterium Enterococcus faecalis Elongates and Incorporates Exogenous Short and Medium Chain Fatty Acids Into Membrane Lipids","authors":"Qi Zou, Huijuan Dong, John E. Cronan","doi":"10.1111/mmi.15322","DOIUrl":null,"url":null,"abstract":"<i>Enterococcus faecalis</i> incorporates and elongates exogeneous short- and medium-chain fatty acids to chains sufficiently long to enter membrane phospholipid synthesis. The acids are activated by the <i>E. faecalis</i> fatty acid kinase (FakAB) system and converted to acyl-ACP species that can enter the fatty acid synthesis cycle to become elongated. Following elongation the acyl chains are incorporated into phospholipid by the PlsY and PlsC acyltranferases. This process has little effect on <i>de novo</i> fatty acid synthesis in the case of short-chain acids, but a greater effect with medium-chain acids. Incorporation of exogenous short-chain fatty acids in <i>E. faecalis</i> was greatly increased by overexpression of either AcpA, the acyl carrier protein of fatty acid synthesis, or the phosphate acyl transferase PlsX. The PlsX of <i>Lactococcus lactis</i> was markedly superior to the <i>E. faecalis</i> PlsX in incorporation of short-chain but not long-chain acids. These manipulations also allowed unsaturated fatty acids of lengths too short for direct transfer to the phospholipid synthesis pathway to be elongated and support growth of <i>E. faecalis</i> unsaturated fatty acid auxotrophic strains. Short- and medium-chain fatty acids can be abundant in the human gastrointestinal tract and their elongation by <i>E. faecalis</i> would conserve energy and carbon by relieving the requirement for total <i>de novo</i> synthesis of phospholipid acyl chains.","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":"27 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.15322","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Enterococcus faecalis incorporates and elongates exogeneous short- and medium-chain fatty acids to chains sufficiently long to enter membrane phospholipid synthesis. The acids are activated by the E. faecalis fatty acid kinase (FakAB) system and converted to acyl-ACP species that can enter the fatty acid synthesis cycle to become elongated. Following elongation the acyl chains are incorporated into phospholipid by the PlsY and PlsC acyltranferases. This process has little effect on de novo fatty acid synthesis in the case of short-chain acids, but a greater effect with medium-chain acids. Incorporation of exogenous short-chain fatty acids in E. faecalis was greatly increased by overexpression of either AcpA, the acyl carrier protein of fatty acid synthesis, or the phosphate acyl transferase PlsX. The PlsX of Lactococcus lactis was markedly superior to the E. faecalis PlsX in incorporation of short-chain but not long-chain acids. These manipulations also allowed unsaturated fatty acids of lengths too short for direct transfer to the phospholipid synthesis pathway to be elongated and support growth of E. faecalis unsaturated fatty acid auxotrophic strains. Short- and medium-chain fatty acids can be abundant in the human gastrointestinal tract and their elongation by E. faecalis would conserve energy and carbon by relieving the requirement for total de novo synthesis of phospholipid acyl chains.
期刊介绍:
Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses.
Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.