Unraveling the Fundamentals of Axial Coordination FeN4+1 Sites Regulating the Peroxymonosulfate Activation for Fenton-Like Activity

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-10-09 DOI:10.1002/smll.202405012
Sijia Jin, Wenxian Tan, Xiaofeng Tang, Mengxuan Li, Xinyi Yu, Haiyan Zhang, Shuang Song, Tao Zeng
{"title":"Unraveling the Fundamentals of Axial Coordination FeN4+1 Sites Regulating the Peroxymonosulfate Activation for Fenton-Like Activity","authors":"Sijia Jin, Wenxian Tan, Xiaofeng Tang, Mengxuan Li, Xinyi Yu, Haiyan Zhang, Shuang Song, Tao Zeng","doi":"10.1002/smll.202405012","DOIUrl":null,"url":null,"abstract":"Precise modulation of the axial coordination microenvironment in single-atom catalysts (SACs) to enhance peroxymonosulfate (PMS) activation represents a promising yet underexplored approach. This study introduces a pyrolysis-free strategy to fabricate SACs with well-defined axial-FeN<sub>4+1</sub> coordination structures. By incorporating additional out-of-plane axial nitrogen into well-defined FeN<sub>4</sub> active sites within a planar, fully conjugated polyphthalocyanine framework, FeN<sub>4+1</sub> configurations are developed that significantly enhance PMS activation. The axial-FeN<sub>4+1</sub> catalyst excelled in activating PMS, with a high bisphenol A (BPA) degradation rate of 2.256 min<sup>−1</sup>, surpassing planar-FeN<sub>4</sub>/PMS systems by 6.8 times. Theoretical calculations revealed that the axial coordination between N and the Fe sites forms an optimized axial FeN<sub>4+1</sub> structure, disrupting the electron distribution symmetry of Fe and optimizing the electron distribution of the Fe 3d orbital (increasing the d-band center from −1.231 to −0.432 eV). Consequently, this led to an enhanced perpendicular adsorption energy of PMS from −1.79 to −1.82 eV and reduced energy barriers for the formation of the key reaction intermediate (O*) that generates <sup>1</sup>O<sub>2</sub>. This study provides new insights into PMS activation through the axial coordinated engineering of well-defined SACs in water purification processes.","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202405012","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Precise modulation of the axial coordination microenvironment in single-atom catalysts (SACs) to enhance peroxymonosulfate (PMS) activation represents a promising yet underexplored approach. This study introduces a pyrolysis-free strategy to fabricate SACs with well-defined axial-FeN4+1 coordination structures. By incorporating additional out-of-plane axial nitrogen into well-defined FeN4 active sites within a planar, fully conjugated polyphthalocyanine framework, FeN4+1 configurations are developed that significantly enhance PMS activation. The axial-FeN4+1 catalyst excelled in activating PMS, with a high bisphenol A (BPA) degradation rate of 2.256 min−1, surpassing planar-FeN4/PMS systems by 6.8 times. Theoretical calculations revealed that the axial coordination between N and the Fe sites forms an optimized axial FeN4+1 structure, disrupting the electron distribution symmetry of Fe and optimizing the electron distribution of the Fe 3d orbital (increasing the d-band center from −1.231 to −0.432 eV). Consequently, this led to an enhanced perpendicular adsorption energy of PMS from −1.79 to −1.82 eV and reduced energy barriers for the formation of the key reaction intermediate (O*) that generates 1O2. This study provides new insights into PMS activation through the axial coordinated engineering of well-defined SACs in water purification processes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示轴向配位 FeN4+1 位点调节过一硫酸盐活化以产生类似芬顿活性的基本原理
精确调节单原子催化剂(SAC)中的轴向配位微环境以增强过一硫酸盐(PMS)活化是一种前景广阔但尚未得到充分探索的方法。本研究介绍了一种无热解策略,用于制造具有明确轴向-FeN4+1 配位结构的 SAC。通过在平面全共轭多酞菁框架内的定义明确的 FeN4 活性位点中加入额外的平面外轴向氮,FeN4+1 构型得以开发,从而显著提高了 PMS 的活化能力。轴向 FeN4+1 催化剂在活化 PMS 方面表现出色,双酚 A(BPA)降解率高达 2.256 min-1,是平面 FeN4/PMS 系统的 6.8 倍。理论计算显示,N 与 Fe 位点之间的轴向配位形成了优化的轴向 FeN4+1 结构,破坏了 Fe 的电子分布对称性,优化了 Fe 3d 轨道的电子分布(将 d 带中心从 -1.231 eV 提高到 -0.432 eV)。因此,这导致 PMS 的垂直吸附能从 -1.79 eV 提高到 -1.82 eV,并降低了生成 1O2 的关键反应中间体 (O*) 的形成能垒。这项研究为在水净化过程中通过明确定义的 SAC 的轴向配位工程激活 PMS 提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
The Assembly of Miniaturized Droplets toward Functional Architectures Single-Atom Electron Pumps Over Transition Metal Chalcogenides Boosting Photocatalysis Unraveling the Fundamentals of Axial Coordination FeN4+1 Sites Regulating the Peroxymonosulfate Activation for Fenton-Like Activity Deciphering the Impact of Current, Composition, and Potential on the Lithiation Behavior of Si-Rich Silicon-Graphite Anodes An Eco-Friendly Passivation Strategy of Resveratrol for Highly Efficient and Antioxidative Perovskite Solar Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1