Unlocking the charge efficiency of γ’-V2O5 for Na-ion battery through a solution synthesis technique

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Acta Materialia Pub Date : 2024-10-09 DOI:10.1016/j.actamat.2024.120461
Dauren Batyrbekuly , Barbara Laïk , Zhumabay Bakenov , Ankush Bhatia , Jean-Pierre Pereira-Ramos , Rita Baddour-Hadjean
{"title":"Unlocking the charge efficiency of γ’-V2O5 for Na-ion battery through a solution synthesis technique","authors":"Dauren Batyrbekuly ,&nbsp;Barbara Laïk ,&nbsp;Zhumabay Bakenov ,&nbsp;Ankush Bhatia ,&nbsp;Jean-Pierre Pereira-Ramos ,&nbsp;Rita Baddour-Hadjean","doi":"10.1016/j.actamat.2024.120461","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the γ’-V<sub>2</sub>O<sub>5</sub> cathode material was prepared through a solution synthesis technique leading to homogeneous, fine and porous particles 100–200 nm in size. This successful preparation allows to overcome the huge drawback of the microsized material in terms of charge efficiency and to take benefit of the attractive Na insertion properties of γ’-V<sub>2</sub>O<sub>5,</sub> i. e. a significant available capacity of 145 mAh g<sup>- 1</sup>, a high working potential of about 3.25 V vs. Na<sup>+</sup>/Na, an excellent charge efficiency, a high-rate capability and good cycle life. A detailed structural study upon Na insertion/extraction shows that the proposed nanosizing approach promotes a homogeneous Na solubility and solid solution behavior in a wider composition range (0.4 &lt; <em>x</em> ≤ 1 in γ-Na<sub>x</sub>V<sub>2</sub>O<sub>5</sub>) compared to the results previously reported for solid-state synthesized γ’-V<sub>2</sub>O<sub>5</sub>. Furthermore, highly reversible structural changes are evidenced. Key kinetic parameters governing the Na insertion-extraction reaction are discussed thanks to an impedance spectroscopy study revealing a faster Na diffusivity in the one-phase region. The obtained results allow a comprehensive understanding of the enhanced performance exhibited by the present sub-micronic γ’-V<sub>2</sub>O<sub>5</sub> material.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"282 ","pages":"Article 120461"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645424008103","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the γ’-V2O5 cathode material was prepared through a solution synthesis technique leading to homogeneous, fine and porous particles 100–200 nm in size. This successful preparation allows to overcome the huge drawback of the microsized material in terms of charge efficiency and to take benefit of the attractive Na insertion properties of γ’-V2O5, i. e. a significant available capacity of 145 mAh g- 1, a high working potential of about 3.25 V vs. Na+/Na, an excellent charge efficiency, a high-rate capability and good cycle life. A detailed structural study upon Na insertion/extraction shows that the proposed nanosizing approach promotes a homogeneous Na solubility and solid solution behavior in a wider composition range (0.4 < x ≤ 1 in γ-NaxV2O5) compared to the results previously reported for solid-state synthesized γ’-V2O5. Furthermore, highly reversible structural changes are evidenced. Key kinetic parameters governing the Na insertion-extraction reaction are discussed thanks to an impedance spectroscopy study revealing a faster Na diffusivity in the one-phase region. The obtained results allow a comprehensive understanding of the enhanced performance exhibited by the present sub-micronic γ’-V2O5 material.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过溶液合成技术提高γ'-V2O5 在纳离子电池中的充电效率
在这项研究中,γ'-V2O5 阴极材料是通过溶液合成技术制备而成的,其颗粒均匀、细小且多孔,大小为 100-200 纳米。这种成功的制备方法克服了微型材料在充电效率方面的巨大缺陷,并利用了 γ'-V2O5 极具吸引力的 Na 插入特性,即 145 mAh g- 1 的显著可用容量、对 Na+/Na 约 3.25 V 的高工作电位、出色的充电效率、高速率能力和良好的循环寿命。对 Na 插入/萃取后的详细结构研究表明,与之前报道的固态合成γ'-V2O5 的结果相比,所提出的纳米化方法在更宽的成分范围(γ-NaxV2O5 中为 0.4 < x ≤ 1)内促进了均匀的 Na 溶解度和固溶行为。此外,还证明了高度可逆的结构变化。通过阻抗光谱研究发现,在单相区域,Na 的扩散速度更快,因此对 Na 插入萃取反应的关键动力学参数进行了讨论。所获得的结果有助于全面理解目前的亚微米级 γ'-V2O5 材料所表现出的更高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
期刊最新文献
Effect of leakage current on magnetoelectric effect of 0-3 multiferroic composites based on an equivalent circuit model Suppressing embrittlement and enhancing thermal resistance of bulk superlattice alloys by controllable grain-boundary segregation Behavior of Fe-Based Alloys in a Liquid Lead-Bismuth Environment under Simultaneous Proton Irradiation and Corrosion Spatially confined magnetic shape-memory Heuslers: implications for nanoscale devices Short-range order in ion irradiated fluorite structural derivatives in Sc2O3-HfO2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1