Exploring LCST- and UCST-like Behavior of Branched Molecules Bearing Repeat Units of Elastin-like Peptides as Side Components.

IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Biomacromolecules Pub Date : 2024-10-09 DOI:10.1021/acs.biomac.4c00751
Naoki Tanaka, Keitaro Suyama, Keisuke Tomohara, Takeru Nose
{"title":"Exploring LCST- and UCST-like Behavior of Branched Molecules Bearing Repeat Units of Elastin-like Peptides as Side Components.","authors":"Naoki Tanaka, Keitaro Suyama, Keisuke Tomohara, Takeru Nose","doi":"10.1021/acs.biomac.4c00751","DOIUrl":null,"url":null,"abstract":"<p><p>Elastin-like peptides (ELPs) exhibit lower critical solution temperature (LCST)-type behavior, being soluble at low temperatures and insoluble at high temperatures. While the properties of linear, long-chain ELPs are well-studied, short-chain ELPs, especially those with branched architectures, have been less explored. Herein, to obtain further insights into multimeric short ELPs, we investigated the temperature-responsive properties of branched molecules composed of a repeating pentapeptide unit of short ELPs, Phe-Pro-Gly-Val-Gly, as side components and oligo(Glu) as a backbone structure. In turbidimetry experiments, the branched ELPs showed LCST-like behavior similar to conventional ELPs and upper critical solution temperature (UCST)-like behavior, which are rarely observed in ELPs. In addition, the morphological aspects and mechanisms underlying the temperature-responsiveness were investigated. We observed that spherical aggregates formed, and the branched ELPs underwent structural changes through the self-assembly process. This study demonstrates the unique temperature-responsiveness of branched short ELPs, providing new insights into the future development and use of ELPs with tailored properties.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c00751","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Elastin-like peptides (ELPs) exhibit lower critical solution temperature (LCST)-type behavior, being soluble at low temperatures and insoluble at high temperatures. While the properties of linear, long-chain ELPs are well-studied, short-chain ELPs, especially those with branched architectures, have been less explored. Herein, to obtain further insights into multimeric short ELPs, we investigated the temperature-responsive properties of branched molecules composed of a repeating pentapeptide unit of short ELPs, Phe-Pro-Gly-Val-Gly, as side components and oligo(Glu) as a backbone structure. In turbidimetry experiments, the branched ELPs showed LCST-like behavior similar to conventional ELPs and upper critical solution temperature (UCST)-like behavior, which are rarely observed in ELPs. In addition, the morphological aspects and mechanisms underlying the temperature-responsiveness were investigated. We observed that spherical aggregates formed, and the branched ELPs underwent structural changes through the self-assembly process. This study demonstrates the unique temperature-responsiveness of branched short ELPs, providing new insights into the future development and use of ELPs with tailored properties.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索以弹性蛋白样肽重复单元为侧成分的支链分子的 LCST 和 UCST 类行为。
弹性蛋白样肽(ELPs)表现出较低临界溶液温度(LCST)类型的行为,在低温下可溶,在高温下不溶。虽然线性长链弹性蛋白肽的特性已得到充分研究,但对短链弹性蛋白肽,尤其是具有支链结构的弹性蛋白肽的研究还较少。在此,为了进一步了解多聚短ELPs,我们研究了以短ELPs的重复五肽单元Phe-Pro-Gly-Val-Gly为侧成分、以oligo(Glu)为骨架结构的支化分子的温度响应特性。在浊度测定实验中,支化 ELPs 表现出类似于传统 ELPs 的 LCST 行为和类似于上临界溶液温度 (UCST) 的行为,而这些行为在 ELPs 中很少见。此外,我们还研究了温度响应性的形态特征和机制。我们观察到球形聚集体的形成,以及支化 ELPs 在自组装过程中发生的结构变化。这项研究证明了支化短ELP独特的温度响应性,为今后开发和使用具有定制特性的ELP提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Noncanonical Amino Acid Incorporation Modulates Condensate States of Intrinsically Disordered Proteins in Escherichia coli Cells. Exploring LCST- and UCST-like Behavior of Branched Molecules Bearing Repeat Units of Elastin-like Peptides as Side Components. Silica-Biomacromolecule Interactions: Toward a Mechanistic Understanding of Silicification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1