{"title":"Simplified approach to retention times of narrow binary pulses in the case of ideal chromatography model and Langmuir isotherm","authors":"","doi":"10.1016/j.chroma.2024.465405","DOIUrl":null,"url":null,"abstract":"<div><div>Analytical solution to ideal chromatography model has been established for binary Langmuir isotherm and rectangular injections. However, retention time of the less adsorbed species, which is of great theoretical and practical significance, cannot be given in a closed form and is conventionally solved by numerical integration with a floating boundary. A simplified approach is provided in this article. A 4th order algebraic equation was derived and used to solve the maximum concentration that can be further used to explicitly calculate retention time. Under most practical conditions, reliable initial guess can be easily acquired, allowing for the application of Newton-Raphson method for rapid determination of the root of the 4th order equation. In addition, derivatives of retention time with respective to isotherm parameters can be given in analytical forms.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967324007799","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Analytical solution to ideal chromatography model has been established for binary Langmuir isotherm and rectangular injections. However, retention time of the less adsorbed species, which is of great theoretical and practical significance, cannot be given in a closed form and is conventionally solved by numerical integration with a floating boundary. A simplified approach is provided in this article. A 4th order algebraic equation was derived and used to solve the maximum concentration that can be further used to explicitly calculate retention time. Under most practical conditions, reliable initial guess can be easily acquired, allowing for the application of Newton-Raphson method for rapid determination of the root of the 4th order equation. In addition, derivatives of retention time with respective to isotherm parameters can be given in analytical forms.
期刊介绍:
The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.