Association Between Recurrence of High-grade Squamous Intraepithelial Lesions of the Uterine Cervix and p16, C-myc and PIK3CA Proteins-A Single-center Retrospective Study.

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Biochemistry and Biophysics Pub Date : 2024-10-09 DOI:10.1007/s12013-024-01548-7
Ya Li, Rui Zhang, Jin Zhang, Ying Gao, Yawen Bian, Wenpei Bai
{"title":"Association Between Recurrence of High-grade Squamous Intraepithelial Lesions of the Uterine Cervix and p16, C-myc and PIK3CA Proteins-A Single-center Retrospective Study.","authors":"Ya Li, Rui Zhang, Jin Zhang, Ying Gao, Yawen Bian, Wenpei Bai","doi":"10.1007/s12013-024-01548-7","DOIUrl":null,"url":null,"abstract":"<p><p>Cervical high-grade squamous intraepithelial lesions (HSIL) are one of the common types of cervical cancer precancerous changes, and HPV16/18 positivity is a risk factor for HSIL recurrence. By detecting the expression of relevant markers in the lesion tissue of recurrent patients, it is helpful for the diagnosis of HPV16/18 positivity and can provide a basis for disease recurrence risk assessment. Therefore, this study analyzed the relationship between p16, C-myc, PIK3CA proteins and HPV16/18 positivity in recurrent cervical HSIL patients. By examining the p16, C-myc, and PIK3CA proteins in the cervical lesion tissue of 180 HSIL recurrent patients who underwent examination in the hospital from January 2020 to December 2022, this study analyzed the relationship between p16, C-myc, and PIK3CA proteins and HPV16/18 positivity. PIK3CA expression detection found that the proportion of positive expression of p16, C-myc, and PIK3CA in HPV16/18 (+) patients was significantly higher than that in HPV16/18 (-), and the expression of HPV16/18 in HSIL patients was significantly positively correlated with p16, C-myc, and PIK3CA. Meanwhile, a prediction model F was constructed based on binary logistic regression analysis data with good fit, and through ROC curve analysis. It was found that p16, C-myc, PIK3CA, and logistic model F can effectively predict HPV16/18 (+), with model F having the best diagnostic performance.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01548-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cervical high-grade squamous intraepithelial lesions (HSIL) are one of the common types of cervical cancer precancerous changes, and HPV16/18 positivity is a risk factor for HSIL recurrence. By detecting the expression of relevant markers in the lesion tissue of recurrent patients, it is helpful for the diagnosis of HPV16/18 positivity and can provide a basis for disease recurrence risk assessment. Therefore, this study analyzed the relationship between p16, C-myc, PIK3CA proteins and HPV16/18 positivity in recurrent cervical HSIL patients. By examining the p16, C-myc, and PIK3CA proteins in the cervical lesion tissue of 180 HSIL recurrent patients who underwent examination in the hospital from January 2020 to December 2022, this study analyzed the relationship between p16, C-myc, and PIK3CA proteins and HPV16/18 positivity. PIK3CA expression detection found that the proportion of positive expression of p16, C-myc, and PIK3CA in HPV16/18 (+) patients was significantly higher than that in HPV16/18 (-), and the expression of HPV16/18 in HSIL patients was significantly positively correlated with p16, C-myc, and PIK3CA. Meanwhile, a prediction model F was constructed based on binary logistic regression analysis data with good fit, and through ROC curve analysis. It was found that p16, C-myc, PIK3CA, and logistic model F can effectively predict HPV16/18 (+), with model F having the best diagnostic performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
子宫颈高级别鳞状上皮内病变复发与 p16、C-myc 和 PIK3CA 蛋白的关系--一项单中心回顾性研究
宫颈高级别鳞状上皮内病变(HSIL)是常见的宫颈癌癌前病变类型之一,HPV16/18阳性是HSIL复发的危险因素。通过检测复发患者病变组织中相关标志物的表达,有助于HPV16/18阳性的诊断,并为疾病复发风险评估提供依据。因此,本研究分析了复发性宫颈HSIL患者p16、C-myc、PIK3CA蛋白与HPV16/18阳性的关系。本研究通过检测2020年1月至2022年12月在该院接受检查的180例HSIL复发患者宫颈病变组织中的p16、C-myc和PIK3CA蛋白,分析p16、C-myc和PIK3CA蛋白与HPV16/18阳性的关系。PIK3CA表达检测发现,HPV16/18(+)患者中p16、C-myc、PIK3CA阳性表达比例明显高于HPV16/18(-),HSIL患者中HPV16/18的表达与p16、C-myc、PIK3CA呈显著正相关。同时,基于拟合良好的二元逻辑回归分析数据,通过 ROC 曲线分析,构建了预测模型 F。结果发现,p16、C-myc、PIK3CA和Logistic模型F能有效预测HPV16/18(+),其中模型F的诊断性能最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
期刊最新文献
Iron Overloading Potentiates the Antitumor Activity of 5-Fluorouracil by Promoting Apoptosis and Ferroptosis in Colorectal Cancer Cells. Navigating the Fractional Calcium Dynamics of Orai Mechanism in Polar Dimensions. BAG3 Mediated Down-regulation in Expression of p66shc has Ramifications on Cellular Proliferation, Apoptosis and Metastasis. Rutin Ameliorates Inflammation and Oxidative Stress in Ulcerative Colitis by Inhibiting NLRP3 Inflammasome Signaling Pathway. Study on the Role of EPHB6 in Inhibiting the Malignant Progression of Cervical Cancer C33A Cells by Binding to CBX7.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1