Hierarchical Biclustering of Mouse Pancreas Mass Spectrometry Imaging Data Using Recursive Rank-2 Non-negative Matrix Factorization.

IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of the American Society for Mass Spectrometry Pub Date : 2024-12-04 Epub Date: 2024-10-09 DOI:10.1021/jasms.4c00268
Melanie Nijs, Etienne Waelkens, Bart De Moor
{"title":"Hierarchical Biclustering of Mouse Pancreas Mass Spectrometry Imaging Data Using Recursive Rank-2 Non-negative Matrix Factorization.","authors":"Melanie Nijs, Etienne Waelkens, Bart De Moor","doi":"10.1021/jasms.4c00268","DOIUrl":null,"url":null,"abstract":"<p><p>One of the main challenges in mass spectrometry imaging data analysis remains the analysis of <i>m</i>/<i>z</i>-spectra displaying a low signal-to-noise ratio caused by their low abundance, sample preparation, matrix effects, fragmentation, and other artifacts. Additionally, we observe that molecules with a high abundance suppress those with lower intensities and misdirect classical tools for MSI data analysis, such as principal component analysis. As a result, the observed significance of a molecule may not always be directly related to its abundance. In this work, we present a recursive rank-2 non-negative matrix factorization (rr2-NMF) algorithm that automatically returns spectral and spatial visualization of colocalized molecules, both highly and lowly abundant. Using this hierarchical decomposition, our method finds spatial and spectral correlations on different levels of abundances. The quality of the analysis is evaluated on MALDI-TOF data of healthy mouse pancreatic tissue for the annotation of molecules of interest in the lower abundances. The results show interesting findings regarding the functioning and colocalization of certain molecules.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":"2934-2941"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00268","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

One of the main challenges in mass spectrometry imaging data analysis remains the analysis of m/z-spectra displaying a low signal-to-noise ratio caused by their low abundance, sample preparation, matrix effects, fragmentation, and other artifacts. Additionally, we observe that molecules with a high abundance suppress those with lower intensities and misdirect classical tools for MSI data analysis, such as principal component analysis. As a result, the observed significance of a molecule may not always be directly related to its abundance. In this work, we present a recursive rank-2 non-negative matrix factorization (rr2-NMF) algorithm that automatically returns spectral and spatial visualization of colocalized molecules, both highly and lowly abundant. Using this hierarchical decomposition, our method finds spatial and spectral correlations on different levels of abundances. The quality of the analysis is evaluated on MALDI-TOF data of healthy mouse pancreatic tissue for the annotation of molecules of interest in the lower abundances. The results show interesting findings regarding the functioning and colocalization of certain molecules.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用递归秩2非负矩阵因式分解对小鼠胰腺质谱成像数据进行分层双聚类分析
质谱成像数据分析的主要挑战之一仍然是如何分析因丰度低、样品制备、基质效应、碎片和其他伪影而导致信噪比较低的 m/z 光谱。此外,我们还观察到,高丰度分子会抑制低强度分子,并误导 MSI 数据分析的传统工具,如主成分分析。因此,观察到的分子重要性并不总是与其丰度直接相关。在这项工作中,我们提出了一种递归秩2非负矩阵因式分解(rr2-NMF)算法,它能自动返回高丰度和低丰度共定位分子的光谱和空间可视化。利用这种分层分解,我们的方法可以发现不同丰度水平上的空间和光谱相关性。在健康小鼠胰腺组织的 MALDI-TOF 数据上对分析质量进行了评估,以标注较低丰度的相关分子。结果显示了有关某些分子的功能和共定位的有趣发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
257
审稿时长
1 months
期刊介绍: The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role. Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives
期刊最新文献
Machine Learning Correlation of Electron Micrographs and ToF-SIMS for the Analysis of Organic Biomarkers in Mudstone. Predicting Precursor Ions Combined with Fragmentation Pathway for Screening and Identification of Flavan-3-ol Oligomers in Tea (Camellia sinensis. var. assamica). Interpolation of Imaging Mass Spectrometry Data by a Window-Based Adversarial Autoencoder Method. MS SIEVE-Pushing the Limits for Biomolecular Mass Spectrometry. Photochemical and Collision-Induced Cross-Linking of Lys, Arg, and His to Nitrile Imines in Peptide Conjugate Ions in the Gas Phase.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1