Fujue Ji, Ji Hyun Park, Hyeonseung Rheem, Jong-Hee Kim
{"title":"Overlapping and Distinct Physical and Biological Phenotypes in Pure Frailty and Obese Frailty.","authors":"Fujue Ji, Ji Hyun Park, Hyeonseung Rheem, Jong-Hee Kim","doi":"10.1042/BSR20240784","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pure frailty and obese frailty are common types of frailty syndrome. However, the overlapping and distinct characteristics between pure frailty and obese frailty remain unclear. This study aims to reveal the overlapping/distinct physical and biological phenotypes of pure frailty and obese frailty, providing theoretical support for their prevention, diagnosis, and treatment.</p><p><strong>Method: </strong>Mice were fed either a normal or high-fat diet and assessed at 20 months of age. They were assigned to one of the four groups: control, obesity, pure frailty, and obese frailty. Grip strength, walking speed, physical activity, endurance, and body weight were measured to determine pure frailty and obese frailty. Physical and biological phenotypes were assessed.</p><p><strong>Results: </strong>Distinct physical phenotypes were observed between pure frailty and obese frailty in terms of body weight, lean mass, fat mass, fat mass in tissue, grip strength, endurance, and physical activity, while walking speed overlapped. In biological phenotypes, levels of Smad2/3, FoxO3a, P62, LAMP-2, and cathepsin L expression were distinct, while AKT, p-AKT, mTOR, p-mTOR, p-Smad2/3, p-FoxO3a, Beclin-1, ATG7, and LC3 overlapped.</p><p><strong>Conclusion: </strong>Distinct physical phenotypes observed in obese frailty are primarily attributable to the effect of obesity, with further impairment of muscle function resulting from the combined effects of frailty syndromes and obesity. Pure frailty and obese frailty share overlapping biological phenotypes, particularly in the regulation of muscle protein synthesis. Moreover, the interaction between obesity and frailty syndromes gives rise to both overlapping and distinct biological phenotypes, especially in the regulation of specific degradation signaling proteins.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554920/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BSR20240784","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Pure frailty and obese frailty are common types of frailty syndrome. However, the overlapping and distinct characteristics between pure frailty and obese frailty remain unclear. This study aims to reveal the overlapping/distinct physical and biological phenotypes of pure frailty and obese frailty, providing theoretical support for their prevention, diagnosis, and treatment.
Method: Mice were fed either a normal or high-fat diet and assessed at 20 months of age. They were assigned to one of the four groups: control, obesity, pure frailty, and obese frailty. Grip strength, walking speed, physical activity, endurance, and body weight were measured to determine pure frailty and obese frailty. Physical and biological phenotypes were assessed.
Results: Distinct physical phenotypes were observed between pure frailty and obese frailty in terms of body weight, lean mass, fat mass, fat mass in tissue, grip strength, endurance, and physical activity, while walking speed overlapped. In biological phenotypes, levels of Smad2/3, FoxO3a, P62, LAMP-2, and cathepsin L expression were distinct, while AKT, p-AKT, mTOR, p-mTOR, p-Smad2/3, p-FoxO3a, Beclin-1, ATG7, and LC3 overlapped.
Conclusion: Distinct physical phenotypes observed in obese frailty are primarily attributable to the effect of obesity, with further impairment of muscle function resulting from the combined effects of frailty syndromes and obesity. Pure frailty and obese frailty share overlapping biological phenotypes, particularly in the regulation of muscle protein synthesis. Moreover, the interaction between obesity and frailty syndromes gives rise to both overlapping and distinct biological phenotypes, especially in the regulation of specific degradation signaling proteins.
期刊介绍:
Bioscience Reports provides a home for sound scientific research in all areas of cell biology and molecular life sciences.
Since 2012, Bioscience Reports has been fully Open Access and publishes all papers under the liberal CC BY licence, giving the life science community quality research to share and discuss.Content before 2012 is subscription-only, and is accessible via archive purchase.
Articles are assessed on soundness, providing a home for valid findings and data.
We welcome papers that span disciplines (e.g. chemistry, medicine), including papers describing:
-new methodologies
-tools and reagents to probe biological questions
-mechanistic details
-disease mechanisms
-metabolic processes and their regulation
-structure and function
-bioenergetics