Factors Determining the Selectivity of NO Reduction Catalyzed by Copper-Vanadium Oxide Cluster Anions Cu2VO3-5.

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL Chemphyschem Pub Date : 2025-01-14 Epub Date: 2024-11-09 DOI:10.1002/cphc.202400888
Si-Dun Wang, Yi Liu, Tong-Mei Ma, Xiao-Na Li, Sheng-Gui He
{"title":"Factors Determining the Selectivity of NO Reduction Catalyzed by Copper-Vanadium Oxide Cluster Anions Cu<sub>2</sub>VO<sub>3-5</sub><sup />.","authors":"Si-Dun Wang, Yi Liu, Tong-Mei Ma, Xiao-Na Li, Sheng-Gui He","doi":"10.1002/cphc.202400888","DOIUrl":null,"url":null,"abstract":"<p><p>Catalytic NO reduction by CO is imperative to satisfy the increasingly rigorous emission regulations. Identifying the structural characteristic of crucial intermediate that governs the selectivity of NO reduction is pivotal to having a fundamental understanding on real-life catalysis. Herein, benefiting from the state-of-the-art mass spectrometry, we demonstrated experimentally that the Cu<sub>2</sub>VO<sub>3-5</sub> <sup>-</sup> clusters can mediate the catalysis of NO reduction by CO, and two competitive channels to generate N<sub>2</sub>O and N<sub>2</sub> can co-exist. Quantum-chemical calculations were performed to rationalize this selectivity. The formation of the ONNO unit on the Cu<sub>2</sub> dimer was demonstrated to be a precursor from which two pathways of NO reduction start to emerge. In the pathway of N<sub>2</sub>O generation, only the Cu<sub>2</sub> dimer was oxidized and the VO<sub>3</sub> moiety functions as a \"support\", while both moieties have to contribute to anchor oxygen atoms from the ONNO unit and then N<sub>2</sub> can be generated. This finding displays a clear picture to elucidate how and why the involvement of VO<sub>3</sub> \"support\" can regulate the selectivity of NO reduction.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400888"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400888","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Catalytic NO reduction by CO is imperative to satisfy the increasingly rigorous emission regulations. Identifying the structural characteristic of crucial intermediate that governs the selectivity of NO reduction is pivotal to having a fundamental understanding on real-life catalysis. Herein, benefiting from the state-of-the-art mass spectrometry, we demonstrated experimentally that the Cu2VO3-5 - clusters can mediate the catalysis of NO reduction by CO, and two competitive channels to generate N2O and N2 can co-exist. Quantum-chemical calculations were performed to rationalize this selectivity. The formation of the ONNO unit on the Cu2 dimer was demonstrated to be a precursor from which two pathways of NO reduction start to emerge. In the pathway of N2O generation, only the Cu2 dimer was oxidized and the VO3 moiety functions as a "support", while both moieties have to contribute to anchor oxygen atoms from the ONNO unit and then N2 can be generated. This finding displays a clear picture to elucidate how and why the involvement of VO3 "support" can regulate the selectivity of NO reduction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
决定铜钒氧化物簇阴离子 Cu2VO3-5 催化氮氧化物还原选择性的因素。
要满足日益严格的排放法规要求,必须用一氧化碳催化还原氮氧化物。要从根本上了解现实生活中的催化反应,关键在于找出影响氮氧化物还原选择性的关键中间体的结构特征。在本文中,我们利用最先进的质谱技术,通过实验证明了 Cu2VO3-5- 团簇可以介导 CO 对 NO 的催化还原,并同时存在生成 N2O 和 N2 的两个竞争性通道。为了合理解释这种选择性,我们进行了量子化学计算。Cu2 二聚体上 ONNO 单元的形成被证明是一个前体,由此开始出现两种 NO 还原途径。在生成 N2O 的途径中,只有 Cu2 二聚体被氧化,VO3 分子起着 "支撑 "的作用,而这两个分子都必须锚定 ONNO 单元中的氧原子,然后才能生成 N2。这一发现清楚地说明了 VO3 "支持 "的参与如何以及为何能调节 NO 还原的选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
期刊最新文献
DFT Study of the ORR Catalytic Activity of As-Doped and As-N Co-Doped Graphene Substrates. Unveiling Molecular Symmetry through Twisted X-Ray Diffraction. Lessons learned on obtaining reliable dynamic properties for ionic liquids. Deciphering Mg-Surface Interactions with Unsaturated Hydrocarbons: An Integrated Experimental-Theoretical Study. Deciphering the Stability of Porous Ionic Liquids: Flow Dynamics, Liquid Structure and Suspension Energetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1