Development of a Mitochondrial Membrane Permeability Transition Prognosis System in Colon Adenocarcinoma: Risk Stratification and Therapeutic Target Identification.
{"title":"Development of a Mitochondrial Membrane Permeability Transition Prognosis System in Colon Adenocarcinoma: Risk Stratification and Therapeutic Target Identification.","authors":"Bomiao Zhang, Mingyu Xia, Shihui Zhao, Yien Li, Chenfeng Yu, Liqiang Song, Shaoke Wang, Binbin Cui","doi":"10.2174/0109298673335900240920070746","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Explore the role of mitochondrial membrane permeability transition (MPT) in colon adenocarcinoma (COAD).</p><p><strong>Background: </strong>Further exploration of risk stratification for COAD prognostic assessment has important clinical value. MPT-related pathways play a key role in the pathogenesis of many human diseases, including tumorigenesis. Its impact on COAD is still unknown.</p><p><strong>Objective: </strong>Bioinformatics analysis was conducted by analyzing the GEO database and TCGA database, and the bioinformatics results were verified by in vitro experiments.</p><p><strong>Method: </strong>Through the analysis of the transcriptome data of 1008 COAD samples in the GEO database and TCGA database, the differential expressions of MPT-related genes in COAD were explored, followed by molecular subtype analysis based on MPT characteristics by univariate Cox algorithm analysis and the consensus clustering algorithm. The gene signature associated with MPT molecular subtypes was further identified and the MPT scoring system was established by the LASSO-univariate Cox analysis algorithm. After evaluating the prognostic value of the MPT scoring system in COAD patients via nomogram establishment, the clinical value of the MPT scoring system was comprehensively analyzed through somatic mutation characteristics analysis, immunotherapy response analysis, immunoinfiltration analysis, and drug sensitivity analysis. CCK-8, WB, PCR, colony formation method, and Transwell method were used to verify the effect of the screened target on the proliferation and invasion of COAD cells.</p><p><strong>Result: </strong>We successfully established a scoring system related to MPT and validated the prognostic value of COAD patients. The potential clinical value of the MPT scoring system was also analyzed. VSIG4 was selected for further in vitro experiments to verify the effect of the screened targets on the proliferation and invasion ability of COAD cells.</p><p><strong>Conclusions: </strong>We established an MPT scoring system for effective risk stratification of COAD patients, demonstrating the impact of MPT on the development of COAD and its potential value as an intervention factor.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0109298673335900240920070746","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: Explore the role of mitochondrial membrane permeability transition (MPT) in colon adenocarcinoma (COAD).
Background: Further exploration of risk stratification for COAD prognostic assessment has important clinical value. MPT-related pathways play a key role in the pathogenesis of many human diseases, including tumorigenesis. Its impact on COAD is still unknown.
Objective: Bioinformatics analysis was conducted by analyzing the GEO database and TCGA database, and the bioinformatics results were verified by in vitro experiments.
Method: Through the analysis of the transcriptome data of 1008 COAD samples in the GEO database and TCGA database, the differential expressions of MPT-related genes in COAD were explored, followed by molecular subtype analysis based on MPT characteristics by univariate Cox algorithm analysis and the consensus clustering algorithm. The gene signature associated with MPT molecular subtypes was further identified and the MPT scoring system was established by the LASSO-univariate Cox analysis algorithm. After evaluating the prognostic value of the MPT scoring system in COAD patients via nomogram establishment, the clinical value of the MPT scoring system was comprehensively analyzed through somatic mutation characteristics analysis, immunotherapy response analysis, immunoinfiltration analysis, and drug sensitivity analysis. CCK-8, WB, PCR, colony formation method, and Transwell method were used to verify the effect of the screened target on the proliferation and invasion of COAD cells.
Result: We successfully established a scoring system related to MPT and validated the prognostic value of COAD patients. The potential clinical value of the MPT scoring system was also analyzed. VSIG4 was selected for further in vitro experiments to verify the effect of the screened targets on the proliferation and invasion ability of COAD cells.
Conclusions: We established an MPT scoring system for effective risk stratification of COAD patients, demonstrating the impact of MPT on the development of COAD and its potential value as an intervention factor.
期刊介绍:
Aims & Scope
Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews and guest edited thematic issues written by leaders in the field covering a range of the current topics in medicinal chemistry. The journal also publishes reviews on recent patents. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.