Maria Fusaro, Raffaele De Caterina, Giovanni Tripepi
{"title":"New Insight into the Role of Vitamin D in the Stroke Risk: A Meta-Analysis of Stratified Data by 25(OH)D Levels.","authors":"Maria Fusaro, Raffaele De Caterina, Giovanni Tripepi","doi":"10.2174/0115701611331890241007112502","DOIUrl":null,"url":null,"abstract":"<p><p>Mendelian Randomization (MR) studies have emerged as a powerful tool for investigating causal relationships between modifiable risk factors and clinical outcomes, using genetic variants as instrumental variables. In the context of vitamin D research, MR is a promising approach to elucidate the effects of vitamin D on various health outcomes, including adverse cardiovascular events. However, the validity of MR analyses relies heavily on the strength of the genetic associations found. \"Weak instrument bias\", arising from instruments with low explanatory power for the exposure of interest, can lead to biased estimates and compromise causal inference. We have, herein, briefly reviewed the challenges posed by weak instrument bias in a large MR study on vitamin D [25(OH)D] and stroke, exploring implications for the study's validity and reliability of findings. We have then added an original meta-analysis stratified by 25(OH)D levels. By using aggregated data from a recent MR study, an original meta-analysis stratified by population mean levels of 25(OH)D has indicated that interventions based on vitamin D supplementations in population mean levels ranging from 50 to 70 nmol/L are likely to translate into a 13% reduction of stroke risk (pooled odds ratio=0.873, 95% CI: 0.764-0.997, p-value=0.04). MR studies are a valuable approach for discerning causal relationships between exposures, such as vitamin D, and health outcomes. However, the effectiveness of MR analyses depends on the robustness of the genetic instruments employed. By recognizing and addressing weak instrument bias in MR studies of vitamin D, researchers can enhance the credibility and utility of causal inference in understanding the health effects of this essential nutrient. A metaanalysis stratified by population mean levels of 25(OH)D has revealed the potential benefits of targeted interventions with vitamin D supplementations for stroke.</p>","PeriodicalId":11278,"journal":{"name":"Current vascular pharmacology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current vascular pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115701611331890241007112502","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0
Abstract
Mendelian Randomization (MR) studies have emerged as a powerful tool for investigating causal relationships between modifiable risk factors and clinical outcomes, using genetic variants as instrumental variables. In the context of vitamin D research, MR is a promising approach to elucidate the effects of vitamin D on various health outcomes, including adverse cardiovascular events. However, the validity of MR analyses relies heavily on the strength of the genetic associations found. "Weak instrument bias", arising from instruments with low explanatory power for the exposure of interest, can lead to biased estimates and compromise causal inference. We have, herein, briefly reviewed the challenges posed by weak instrument bias in a large MR study on vitamin D [25(OH)D] and stroke, exploring implications for the study's validity and reliability of findings. We have then added an original meta-analysis stratified by 25(OH)D levels. By using aggregated data from a recent MR study, an original meta-analysis stratified by population mean levels of 25(OH)D has indicated that interventions based on vitamin D supplementations in population mean levels ranging from 50 to 70 nmol/L are likely to translate into a 13% reduction of stroke risk (pooled odds ratio=0.873, 95% CI: 0.764-0.997, p-value=0.04). MR studies are a valuable approach for discerning causal relationships between exposures, such as vitamin D, and health outcomes. However, the effectiveness of MR analyses depends on the robustness of the genetic instruments employed. By recognizing and addressing weak instrument bias in MR studies of vitamin D, researchers can enhance the credibility and utility of causal inference in understanding the health effects of this essential nutrient. A metaanalysis stratified by population mean levels of 25(OH)D has revealed the potential benefits of targeted interventions with vitamin D supplementations for stroke.
期刊介绍:
Current Vascular Pharmacology publishes clinical and research-based reviews/mini-reviews, original research articles, letters, debates, drug clinical trial studies and guest edited issues to update all those concerned with the treatment of vascular disease, bridging the gap between clinical practice and ongoing research.
Vascular disease is the commonest cause of death in Westernized countries and its incidence is on the increase in developing countries. It follows that considerable research is directed at establishing effective treatment for acute vascular events. Long-term treatment has also received considerable attention (e.g. for symptomatic relief). Furthermore, effective prevention, whether primary or secondary, is backed by the findings of several landmark trials. Vascular disease is a complex field with primary care physicians and nurse practitioners as well as several specialties involved. The latter include cardiology, vascular and cardio thoracic surgery, general medicine, radiology, clinical pharmacology and neurology (stroke units).