Non-traumatic brachial plexopathy identification from routine MRIs: Retrospective studies with deep learning networks

IF 3.2 3区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Journal of Radiology Pub Date : 2024-09-18 DOI:10.1016/j.ejrad.2024.111744
Weiguo Cao , Benjamin M. Howe , Sumana Ramanathan , Nicholas G. Rhodes , Panagiotis Korfiatis , Kimberly K. Amrami , Robert J. Spinner , Timothy L. Kline
{"title":"Non-traumatic brachial plexopathy identification from routine MRIs: Retrospective studies with deep learning networks","authors":"Weiguo Cao ,&nbsp;Benjamin M. Howe ,&nbsp;Sumana Ramanathan ,&nbsp;Nicholas G. Rhodes ,&nbsp;Panagiotis Korfiatis ,&nbsp;Kimberly K. Amrami ,&nbsp;Robert J. Spinner ,&nbsp;Timothy L. Kline","doi":"10.1016/j.ejrad.2024.111744","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>This study aims to seek an optimized deep learning model for differentiating non-traumatic brachial plexopathy from routine MRI scans.</div></div><div><h3>Materials and methods</h3><div>This retrospective study collected patients through the electronic medical records (EMR) or pathological reports at Mayo Clinic and underwent BP MRI from January 2002 to December 2022. Using sagittal T1, fluid-sensitive and post-gadolinium images, a radiology panel selected BP’s region of interest (ROI) to form 3 dimensional volumes for this study. We designed six deep learning schemes to conduct BP abnormality differentiation across three MRI sequences. Utilizing five prestigious deep learning networks as the backbone, we trained and validated these models by nested five-fold cross-validation schemes. Furthermore, we defined a ’method score’ derived from the radar charts as a quantitative indicator as the guidance of the preference of the best model.</div></div><div><h3>Results</h3><div>This study selected 196 patients from initial 267 candidates. A total of 256 BP MRI series were compiled from them, comprising 123 normal and 133 abnormal series. The abnormal series included 4 sub-categories, et al. breast cancer (22.5 %), lymphoma (27.1 %), inflammatory conditions (33.1 %) and others (17.2 %). The best-performing model was produced by feature merging mode with triple MRI joint strategy (AUC, 92.2 %; accuracy, 89.5 %) exceeding the multiple channel merging mode (AUC, 89.6 %; accuracy, 89.0 %), solo channel volume mode (AUC, 89.2 %; accuracy, 86.7 %) and the remaining. Evaluated by method score (maximum 2.37), the feature merging mode with backbone of VGG16 yielded the highest score of 1.75 under the triple MRI joint strategy.</div></div><div><h3>Conclusion</h3><div>Deployment of deep learning models across sagittal T1, fluid-sensitive and post-gadolinium MRI sequences demonstrated great potential for brachial plexopathy diagnosis. Our findings indicate that utilizing feature merging mode and multiple MRI joint strategy may offer satisfied deep learning model for BP abnormalities than solo-sequence analysis.</div></div>","PeriodicalId":12063,"journal":{"name":"European Journal of Radiology","volume":"181 ","pages":"Article 111744"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0720048X24004601","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

This study aims to seek an optimized deep learning model for differentiating non-traumatic brachial plexopathy from routine MRI scans.

Materials and methods

This retrospective study collected patients through the electronic medical records (EMR) or pathological reports at Mayo Clinic and underwent BP MRI from January 2002 to December 2022. Using sagittal T1, fluid-sensitive and post-gadolinium images, a radiology panel selected BP’s region of interest (ROI) to form 3 dimensional volumes for this study. We designed six deep learning schemes to conduct BP abnormality differentiation across three MRI sequences. Utilizing five prestigious deep learning networks as the backbone, we trained and validated these models by nested five-fold cross-validation schemes. Furthermore, we defined a ’method score’ derived from the radar charts as a quantitative indicator as the guidance of the preference of the best model.

Results

This study selected 196 patients from initial 267 candidates. A total of 256 BP MRI series were compiled from them, comprising 123 normal and 133 abnormal series. The abnormal series included 4 sub-categories, et al. breast cancer (22.5 %), lymphoma (27.1 %), inflammatory conditions (33.1 %) and others (17.2 %). The best-performing model was produced by feature merging mode with triple MRI joint strategy (AUC, 92.2 %; accuracy, 89.5 %) exceeding the multiple channel merging mode (AUC, 89.6 %; accuracy, 89.0 %), solo channel volume mode (AUC, 89.2 %; accuracy, 86.7 %) and the remaining. Evaluated by method score (maximum 2.37), the feature merging mode with backbone of VGG16 yielded the highest score of 1.75 under the triple MRI joint strategy.

Conclusion

Deployment of deep learning models across sagittal T1, fluid-sensitive and post-gadolinium MRI sequences demonstrated great potential for brachial plexopathy diagnosis. Our findings indicate that utilizing feature merging mode and multiple MRI joint strategy may offer satisfied deep learning model for BP abnormalities than solo-sequence analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从常规磁共振成像中识别非创伤性臂丛神经病:深度学习网络的回顾性研究
目的:本研究旨在寻求一种优化的深度学习模型,用于从常规 MRI 扫描中区分非创伤性臂丛神经病:这项回顾性研究通过梅奥诊所的电子病历(EMR)或病理报告收集了2002年1月至2022年12月期间接受臂丛神经核磁共振检查的患者。放射学小组利用矢状面 T1、液敏和钆后图像选择 BP 的感兴趣区(ROI),形成本研究的三维卷。我们设计了六种深度学习方案,在三种磁共振成像序列中进行 BP 异常分化。利用五个著名的深度学习网络作为骨干,我们通过嵌套的五倍交叉验证方案对这些模型进行了训练和验证。此外,我们还定义了从雷达图中得出的 "方法得分",作为指导优选最佳模型的量化指标:本研究从最初的 267 名候选者中选出了 196 名患者。结果:这项研究从最初的 267 名候选者中选出了 196 名患者,并从中整理出 256 个 BP MRI 序列,包括 123 个正常序列和 133 个异常序列。异常序列包括 4 个子类别,即乳腺癌(22.5%)、淋巴瘤(27.1%)、炎症(33.1%)和其他(17.2%)。采用三重磁共振成像联合策略的特征合并模式(AUC,92.2%;准确率,89.5%)产生的模型表现最佳,超过了多通道合并模式(AUC,89.6%;准确率,89.0%)、单通道容积模式(AUC,89.2%;准确率,86.7%)和其他模式。根据方法得分(最高 2.37 分)进行评估,在三重磁共振成像联合策略下,以 VGG16 为骨干的特征合并模式得分最高,为 1.75 分:在矢状T1、流体敏感和钆后磁共振成像序列中部署深度学习模型,显示了臂丛神经病诊断的巨大潜力。我们的研究结果表明,与单序列分析相比,利用特征合并模式和多重 MRI 联合策略可为臂丛神经异常提供满意的深度学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
3.00%
发文量
398
审稿时长
42 days
期刊介绍: European Journal of Radiology is an international journal which aims to communicate to its readers, state-of-the-art information on imaging developments in the form of high quality original research articles and timely reviews on current developments in the field. Its audience includes clinicians at all levels of training including radiology trainees, newly qualified imaging specialists and the experienced radiologist. Its aim is to inform efficient, appropriate and evidence-based imaging practice to the benefit of patients worldwide.
期刊最新文献
Retraction notice to “Magnetic resonance imaging of lumbar intervertebral discs in elderly patients with minor trauma” [Eur. J. Radiol. 70/2 (2009) 352–356] Value of MRI-visible perivascular spaces in predicting levodopa responsiveness of patients with Parkinson’s disease Fascial involvement score on unenhanced CT potentially helps predict complicated appendicitis Large language models in radiology: Fluctuating performance and decreasing discordance over time Cardiac functional assessment using prospectively electrocardiography-triggered computed tomography in children with congenital heart disease: Comparison of radiation dose and image quality between heart rate-dependent single-extended and heart rate-independent dual-focused scans
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1