The Effect of the Presence and Absence of DNA Repair Genes on the Rate and Pattern of Mutation in Bacteria.

IF 3.2 2区 生物学 Q2 EVOLUTIONARY BIOLOGY Genome Biology and Evolution Pub Date : 2024-10-09 DOI:10.1093/gbe/evae216
Georgios Kalogiannis, Adam Eyre-Walker
{"title":"The Effect of the Presence and Absence of DNA Repair Genes on the Rate and Pattern of Mutation in Bacteria.","authors":"Georgios Kalogiannis, Adam Eyre-Walker","doi":"10.1093/gbe/evae216","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteria lose and gain repair genes as they evolve. Here, we investigate the consequences of gain and loss of 11 DNA repair genes across a broad range of bacteria. Using synonymous polymorphisms from bacteria and a set of 50 phylogenetically independent contrasts, we find no evidence that the presence or absence of these 11 genes affects either the overall level of diversity or the pattern of mutation. Using phylogenetic generalized linear squares yields a similar conclusion. It seems likely that the lack of an effect is due to variation in the genetic background and the environment which obscures any effects that the presence or absence of individual genes might have.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493085/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evae216","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bacteria lose and gain repair genes as they evolve. Here, we investigate the consequences of gain and loss of 11 DNA repair genes across a broad range of bacteria. Using synonymous polymorphisms from bacteria and a set of 50 phylogenetically independent contrasts, we find no evidence that the presence or absence of these 11 genes affects either the overall level of diversity or the pattern of mutation. Using phylogenetic generalized linear squares yields a similar conclusion. It seems likely that the lack of an effect is due to variation in the genetic background and the environment which obscures any effects that the presence or absence of individual genes might have.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DNA 修复基因的存在与否对细菌突变率和突变模式的影响。
细菌在进化过程中会丢失和获得修复基因。在这里,我们研究了 11 个 DNA 修复基因在多种细菌中的增减后果。利用细菌的同义多态性和一组 50 个系统发育上独立的对比,我们发现没有证据表明这 11 个基因的存在与否会影响整体的多样性水平或突变模式。使用系统发育广义线性方程也得出了类似的结论。看来,缺乏影响的原因可能是遗传背景和环境的变化掩盖了单个基因存在与否可能产生的任何影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genome Biology and Evolution
Genome Biology and Evolution EVOLUTIONARY BIOLOGY-GENETICS & HEREDITY
CiteScore
5.80
自引率
6.10%
发文量
169
审稿时长
1 months
期刊介绍: About the journal Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.
期刊最新文献
Comprehensive Review on Plant Cytochrome P450 Evolution: Copy Number, Diversity, and Motif Analysis from Chlorophyta to Dicotyledoneae. Diverse genome structures among eukaryotes may have arisen in response to genetic conflict. Characterization of single-cell cis-regulatory elements informs implications for cell differentiation. Chromosome-level genome assembly of the Australian rainforest tree Rhodamnia argentea (malletwood). Microbiome Geographic Population Structure (mGPS) Detects Fine-Scale Geography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1