{"title":"Roles of Exosomal miRNAs in Asthma: Mechanisms and Applications.","authors":"Xiaoxue Liu, Jiawei Gao, Liuxin Yang, Xingxing Yuan","doi":"10.2147/JAA.S485910","DOIUrl":null,"url":null,"abstract":"<p><p>Asthma is a chronic inflammatory disorder of the airways, characterized by a complex interplay of genetic, environmental, and immunological factors that contribute to its onset and progression. Recent advances in researches have illuminated the critical role of exosomal microRNAs (miRNAs) in the pathogenesis and development of asthma. Exosomes are nano-sized extracellular vesicles that facilitate intercellular communication by transporting a variety of bioactive molecules, including miRNAs, and play a crucial role in regulating gene expression and immune responses, which are central to the inflammatory processes underlying asthma. Exosomal miRNAs are emerging as key players in asthma due to their involvement in various aspects of the disease, including the regulation of inflammation, airway hyperresponsiveness, and remodeling. Their ability to influence the behavior of target cells and tissues makes them valuable both as diagnostic biomarkers and as potential therapeutic targets. This review aims to provide a comprehensive overview of the biogenesis of exosomes, the functional roles of exosomal miRNAs in asthma, and their clinical potential. It will explore the mechanisms by which these miRNAs contribute to asthma pathophysiology, discuss their utility in diagnosing and monitoring the disease, and highlight ongoing research efforts to harness their therapeutic potential.</p>","PeriodicalId":15079,"journal":{"name":"Journal of Asthma and Allergy","volume":"17 ","pages":"935-947"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457472/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asthma and Allergy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JAA.S485910","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ALLERGY","Score":null,"Total":0}
引用次数: 0
Abstract
Asthma is a chronic inflammatory disorder of the airways, characterized by a complex interplay of genetic, environmental, and immunological factors that contribute to its onset and progression. Recent advances in researches have illuminated the critical role of exosomal microRNAs (miRNAs) in the pathogenesis and development of asthma. Exosomes are nano-sized extracellular vesicles that facilitate intercellular communication by transporting a variety of bioactive molecules, including miRNAs, and play a crucial role in regulating gene expression and immune responses, which are central to the inflammatory processes underlying asthma. Exosomal miRNAs are emerging as key players in asthma due to their involvement in various aspects of the disease, including the regulation of inflammation, airway hyperresponsiveness, and remodeling. Their ability to influence the behavior of target cells and tissues makes them valuable both as diagnostic biomarkers and as potential therapeutic targets. This review aims to provide a comprehensive overview of the biogenesis of exosomes, the functional roles of exosomal miRNAs in asthma, and their clinical potential. It will explore the mechanisms by which these miRNAs contribute to asthma pathophysiology, discuss their utility in diagnosing and monitoring the disease, and highlight ongoing research efforts to harness their therapeutic potential.
期刊介绍:
An international, peer-reviewed journal publishing original research, reports, editorials and commentaries on the following topics: Asthma; Pulmonary physiology; Asthma related clinical health; Clinical immunology and the immunological basis of disease; Pharmacological interventions and new therapies.
Although the main focus of the journal will be to publish research and clinical results in humans, preclinical, animal and in vitro studies will be published where they shed light on disease processes and potential new therapies.