Rishum Khan, Muhammad Tariq Qamar, Hina Abid, Irfan Haider, Ammar Zidan, Ali Bahadur, Shahid Iqbal, Sajid Mahmood, Mohammed T Alotaibi, Toheed Akhter
{"title":"The Investigation of Structural, Optical and Thermal Properties of Nickel Doped CeO<sub>2</sub> Integrated PVC Nanocomposite.","authors":"Rishum Khan, Muhammad Tariq Qamar, Hina Abid, Irfan Haider, Ammar Zidan, Ali Bahadur, Shahid Iqbal, Sajid Mahmood, Mohammed T Alotaibi, Toheed Akhter","doi":"10.1002/jemt.24708","DOIUrl":null,"url":null,"abstract":"<p><p>PVC nanocomposite (NC) films with cubic CeO<sub>2</sub> and Ni-doped CeO<sub>2</sub> (NDC) have been prepared using a conventional solution-casting technique. The prepared films were characterized with FT-IR spectrometer, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The optical and thermal properties of the films were evaluated using a UV-visible spectrophotometer and TGA/DSC. The optical study revealed a decrease in optical band gap energies (4.19 to 4.06 eV) whereas the increase in other optical constraints such as optical conductivity, Urbach energy, dispersion energy, refractive index, and dielectric constant of PVC NCs than pristine PVC was observed. The XRD patterns showed the presence of cubic crystalline NDC with a relatively narrower principal diffraction peak in the PVC matrix and the nonexistence of unexpected vibrational peaks in the FTIR spectra of PVC NCs confirmed the successful incorporation of nanostructured CeO<sub>2</sub> and NDC into PVC. Thermogravimetric analysis showed the higher thermal stability of NDC/PVC NC than PVC whereas differential scanning calorimetry declared no significant change in the glass transition temperature (T<sub>g</sub>) of the NCs. Moreover, a good dispersion of Ni-doped CeO<sub>2</sub> nanofiller was noticed in scanning electron micrographs.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":" ","pages":"387-395"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy Research and Technique","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jemt.24708","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
PVC nanocomposite (NC) films with cubic CeO2 and Ni-doped CeO2 (NDC) have been prepared using a conventional solution-casting technique. The prepared films were characterized with FT-IR spectrometer, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The optical and thermal properties of the films were evaluated using a UV-visible spectrophotometer and TGA/DSC. The optical study revealed a decrease in optical band gap energies (4.19 to 4.06 eV) whereas the increase in other optical constraints such as optical conductivity, Urbach energy, dispersion energy, refractive index, and dielectric constant of PVC NCs than pristine PVC was observed. The XRD patterns showed the presence of cubic crystalline NDC with a relatively narrower principal diffraction peak in the PVC matrix and the nonexistence of unexpected vibrational peaks in the FTIR spectra of PVC NCs confirmed the successful incorporation of nanostructured CeO2 and NDC into PVC. Thermogravimetric analysis showed the higher thermal stability of NDC/PVC NC than PVC whereas differential scanning calorimetry declared no significant change in the glass transition temperature (Tg) of the NCs. Moreover, a good dispersion of Ni-doped CeO2 nanofiller was noticed in scanning electron micrographs.
期刊介绍:
Microscopy Research and Technique (MRT) publishes articles on all aspects of advanced microscopy original architecture and methodologies with applications in the biological, clinical, chemical, and materials sciences. Original basic and applied research as well as technical papers dealing with the various subsets of microscopy are encouraged. MRT is the right form for those developing new microscopy methods or using the microscope to answer key questions in basic and applied research.