A small molecule BCL6 inhibitor effectively suppresses diffuse large B cell lymphoma cells growth.

IF 5.3 2区 医学 Q1 ONCOLOGY Molecular Cancer Therapeutics Pub Date : 2024-10-10 DOI:10.1158/1535-7163.MCT-23-0830
Yajing Xing, Weikai Guo, Min Wu, Jiuqing Xie, Dongxia Huang, Pan Hu, Miaoran Zhou, Lin Zhang, Yadong Zhong, Mingyao Liu, Yihua Chen, Zhengfang Yi
{"title":"A small molecule BCL6 inhibitor effectively suppresses diffuse large B cell lymphoma cells growth.","authors":"Yajing Xing, Weikai Guo, Min Wu, Jiuqing Xie, Dongxia Huang, Pan Hu, Miaoran Zhou, Lin Zhang, Yadong Zhong, Mingyao Liu, Yihua Chen, Zhengfang Yi","doi":"10.1158/1535-7163.MCT-23-0830","DOIUrl":null,"url":null,"abstract":"<p><p>The B-cell lymphoma 6 (BCL6) transcription factor plays a key role in establishment of germinal center (GC) formation. Diffuse large B cell lymphoma (DLBCL) originates from the GC reaction due to dysregulation of BCL6. Disrupting BCL6 and its corepressors interaction has become the foundation for rationally designing lymphoma therapies. However, BCL6 inhibitors with good activities in vitro and in vivo are rare and there are no clinically approved BCL6 inhibitors. Here, we discovered and developed a novel range of [1,2,4] triazolo[1,5-a] pyrimidine derivatives targeting BCL6/SMRT interaction. The analogue WK692 directly bound BCL6BTB, disrupted BCL6BTB/SMRT interaction and activated the expression of BCL6 downstream genes inside cells, inhibited DLBCL growth and induced apoptosis in vitro, inhibited GC formation, decreased proportion of follicular helper T (Tfh) cells and impaired immunoglobulin affinity maturation. Further studies showed that WK692 inhibited the DLBCL growth without toxic effects in vivo and synergizes with the EZH2 and PRMT5 inhibitors. Our results demonstrated that WK692 as a BCL6 inhibitor may be developed as a novel potential anticancer agent against DLBCL.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-23-0830","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The B-cell lymphoma 6 (BCL6) transcription factor plays a key role in establishment of germinal center (GC) formation. Diffuse large B cell lymphoma (DLBCL) originates from the GC reaction due to dysregulation of BCL6. Disrupting BCL6 and its corepressors interaction has become the foundation for rationally designing lymphoma therapies. However, BCL6 inhibitors with good activities in vitro and in vivo are rare and there are no clinically approved BCL6 inhibitors. Here, we discovered and developed a novel range of [1,2,4] triazolo[1,5-a] pyrimidine derivatives targeting BCL6/SMRT interaction. The analogue WK692 directly bound BCL6BTB, disrupted BCL6BTB/SMRT interaction and activated the expression of BCL6 downstream genes inside cells, inhibited DLBCL growth and induced apoptosis in vitro, inhibited GC formation, decreased proportion of follicular helper T (Tfh) cells and impaired immunoglobulin affinity maturation. Further studies showed that WK692 inhibited the DLBCL growth without toxic effects in vivo and synergizes with the EZH2 and PRMT5 inhibitors. Our results demonstrated that WK692 as a BCL6 inhibitor may be developed as a novel potential anticancer agent against DLBCL.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种小分子 BCL6 抑制剂能有效抑制弥漫大 B 细胞淋巴瘤细胞的生长。
B 细胞淋巴瘤 6(BCL6)转录因子在生殖中心(GC)的形成过程中起着关键作用。弥漫大B细胞淋巴瘤(DLBCL)起源于BCL6失调导致的生殖中心反应。破坏 BCL6 及其核心抑制因子的相互作用已成为合理设计淋巴瘤疗法的基础。然而,具有良好体外和体内活性的BCL6抑制剂并不多见,目前也没有临床批准的BCL6抑制剂。在此,我们发现并开发了一系列新型[1,2,4]三唑并[1,5-a]嘧啶衍生物,靶向BCL6/SMRT相互作用。类似物 WK692 可直接与 BCL6BTB 结合,破坏 BCL6BTB/SMRT 相互作用,激活细胞内 BCL6 下游基因的表达,在体外抑制 DLBCL 的生长并诱导其凋亡,抑制 GC 的形成,降低滤泡辅助 T(Tfh)细胞的比例,损害免疫球蛋白的亲和性成熟。进一步的研究表明,WK692能抑制DLBCL在体内的生长,且无毒性作用,并能与EZH2和PRMT5抑制剂协同作用。我们的研究结果表明,作为一种 BCL6 抑制剂,WK692 可被开发为一种潜在的新型 DLBCL 抗癌药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.20
自引率
1.80%
发文量
331
审稿时长
3 months
期刊介绍: Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.
期刊最新文献
A novel designed anti-PD-L1/OX40 bispecific antibody augments both peripheral and tumor-associated immune responses for boosting anti-tumor immunity. Pancreatic CAF-derived Autotaxin (ATX) drives autocrine CTGF expression to modulate pro-tumorigenic signaling. Novel Amanitin-based Antibody Drug Conjugates (ATAC®) targeting TROP2 for the treatment of Pancreatic Cancer. Characteristics of a CCL21-gene modified dendritic cell vaccine utilized for a clinical trial in non-small cell lung cancer. Modeling the acute mucosal toxicity to fractionated radiotherapy combined with the ATM inhibitor WSD0628.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1