Beiyuan Liang, Misbah Khan, Hayden Storts, Evan H Zhang, Xinru Zheng, Xuanxuan Xing, Hazel Claybon, Jenna Wilson, Chunjie Li, Ning Jin, Richard Fishel, Wayne O Miles, Jing J Wang
{"title":"Riluzole Enhancing Anti-PD-1 Efficacy by Activating cGAS/STING Signaling in Colorectal Cancer.","authors":"Beiyuan Liang, Misbah Khan, Hayden Storts, Evan H Zhang, Xinru Zheng, Xuanxuan Xing, Hazel Claybon, Jenna Wilson, Chunjie Li, Ning Jin, Richard Fishel, Wayne O Miles, Jing J Wang","doi":"10.1158/1535-7163.MCT-24-0289","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer is the second leading cause of cancer mortality in the United States. Although immune checkpoint blockade therapies including anti-PD-1/PD-L1 have been successful in treating a subset of patients with colorectal cancer, the response rates remain low. We have found that riluzole, a well-tolerated FDA-approved oral medicine for treating amyotrophic lateral sclerosis, increased intratumoral CD8+ T cells and suppressed tumor growth of colon cancer cells in syngeneic immune-competent mice. Riluzole-mediated tumor suppression was dependent on the presence of CD8+ T cells. Riluzole activates the cytosolic DNA sensing cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway in colon cancer cells, resulting in increased expression of IFNβ and IFNβ-regulated genes including CXCL10. Inhibition of ataxia telangiectasia mutated (ATM), but not ATM-related, resulted in a synergistic increase in IFNβ expression, suggesting that riluzole induces ATM-mediated damage response that contributes to cGAS/STING activation. Depletion of cGAS or STING significantly attenuated riluzole-induced expression of IFNβ and CXCL10 as well as increase of intratumoral CD8+ T cells and suppression of tumor growth. These results indicate that riluzole-mediated tumor infiltration of CD8+ T cells and attenuation of tumor growth is dependent on tumor cell-intrinsic STING activation. To determine whether riluzole treatment primes the tumor microenvironment for immune checkpoint modulation, riluzole was combined with anti-PD-1 treatment. This combination showed greater efficacy than either single agent and strongly suppressed tumor growth in vivo. Taken together, our studies indicate that riluzole activates cGAS/STING-mediated innate immune responses, which might be exploited to sensitize colorectal tumors to anti-PD-1/PD-L1 therapies.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":"131-140"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695182/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-24-0289","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Colorectal cancer is the second leading cause of cancer mortality in the United States. Although immune checkpoint blockade therapies including anti-PD-1/PD-L1 have been successful in treating a subset of patients with colorectal cancer, the response rates remain low. We have found that riluzole, a well-tolerated FDA-approved oral medicine for treating amyotrophic lateral sclerosis, increased intratumoral CD8+ T cells and suppressed tumor growth of colon cancer cells in syngeneic immune-competent mice. Riluzole-mediated tumor suppression was dependent on the presence of CD8+ T cells. Riluzole activates the cytosolic DNA sensing cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway in colon cancer cells, resulting in increased expression of IFNβ and IFNβ-regulated genes including CXCL10. Inhibition of ataxia telangiectasia mutated (ATM), but not ATM-related, resulted in a synergistic increase in IFNβ expression, suggesting that riluzole induces ATM-mediated damage response that contributes to cGAS/STING activation. Depletion of cGAS or STING significantly attenuated riluzole-induced expression of IFNβ and CXCL10 as well as increase of intratumoral CD8+ T cells and suppression of tumor growth. These results indicate that riluzole-mediated tumor infiltration of CD8+ T cells and attenuation of tumor growth is dependent on tumor cell-intrinsic STING activation. To determine whether riluzole treatment primes the tumor microenvironment for immune checkpoint modulation, riluzole was combined with anti-PD-1 treatment. This combination showed greater efficacy than either single agent and strongly suppressed tumor growth in vivo. Taken together, our studies indicate that riluzole activates cGAS/STING-mediated innate immune responses, which might be exploited to sensitize colorectal tumors to anti-PD-1/PD-L1 therapies.
期刊介绍:
Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.