{"title":"MoS<sub>2</sub>high temperature sensitive element with a single Si<sub>3</sub>N<sub>4</sub>protective layer.","authors":"Lingbing Kong, Yuning Li, Yuqiang Wang, Tao Deng","doi":"10.1088/1361-6528/ad844e","DOIUrl":null,"url":null,"abstract":"<p><p>Temperature sensors find extensive applications in industrial production, defense, and military sectors. However, conventional temperature sensors are limited to operating temperatures below 200°C and are unsuitable for detecting extremely high temperatures. In this paper, a method for thermal protection of molybdenum disulfide (MoS2) films is proposed and a MoS2 high temperature sensor is prepared. By depositing a monolayer of Si3N4 onto MoS2, not only is the issue of high-temperature oxidation effectively addressed, but also the contamination by impurities that could potentially compromise the performance of MoS2 is prevented. Moreover, the width of the Schottky barrier of metal/MoS2 is reduced by using PECVD deposition of 400 nm Si3N4 to form an ohmic contact, which improves the electrical performance of the device by three orders of magnitude. The sensor exhibits a positive temperature coefficient measurement range of 25 to 550°C, with a maximum temperature coefficient of resistance (TCR) of 0.32%·°C-1. The thermal protection method proposed in this paper provides a new idea for the fabrication of high-temperature sensors, which is expected to be applied in the high-temperature field.
.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad844e","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Temperature sensors find extensive applications in industrial production, defense, and military sectors. However, conventional temperature sensors are limited to operating temperatures below 200°C and are unsuitable for detecting extremely high temperatures. In this paper, a method for thermal protection of molybdenum disulfide (MoS2) films is proposed and a MoS2 high temperature sensor is prepared. By depositing a monolayer of Si3N4 onto MoS2, not only is the issue of high-temperature oxidation effectively addressed, but also the contamination by impurities that could potentially compromise the performance of MoS2 is prevented. Moreover, the width of the Schottky barrier of metal/MoS2 is reduced by using PECVD deposition of 400 nm Si3N4 to form an ohmic contact, which improves the electrical performance of the device by three orders of magnitude. The sensor exhibits a positive temperature coefficient measurement range of 25 to 550°C, with a maximum temperature coefficient of resistance (TCR) of 0.32%·°C-1. The thermal protection method proposed in this paper provides a new idea for the fabrication of high-temperature sensors, which is expected to be applied in the high-temperature field.
.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.