Kübra Bezir, Pelin Pelit Arayici, Buşra Akgül, Emrah Şefik Abamor, Serap Acar
{"title":"RABV antigenic peptide loaded polymeric nanoparticle production, characterization, and preliminary investigation of its biological activity.","authors":"Kübra Bezir, Pelin Pelit Arayici, Buşra Akgül, Emrah Şefik Abamor, Serap Acar","doi":"10.1088/1361-6528/ad84fe","DOIUrl":null,"url":null,"abstract":"<p><p>Nanoparticle-based antigen carrier systems have become a significant area of research with the advancement of nanotechnology. Biodegradable polymers have emerged as particularly promising carrier vehicles due to their ability to address the limitations of existing vaccine systems. In this study, we successfully encapsulated the G5-24 linear peptide, located between amino acids 253 and 275 in the primary sequence of the rabies virus G protein, into biodegradable and biocompatible PLGA copolymer using the double emulsion solvent evaporation method. The resulting nanoparticles had a size of approximately 230.9 ± 0.9074 nm, with a PDI value of 0.168 ± 0.017 and a zeta potential value of -9.86 ± 0.132 mV. SEM images confirmed that the synthesized nanoparticles were uniform in size and distribution. Additionally, FTIR spectra indicated successful peptide loading into the nanoparticles. The encapsulation efficiency of the peptide-loaded nanoparticles was 73.3%, with a peptide loading capacity of 48.2% and a reaction yield of 30.4%. Peptide release studies demonstrated that 65.55% of the peptide was released in a controlled manner over 28 d, following a 'biphasic burst release' profile consistent with the degradation profile of PLGA. This controlled release is particularly beneficial for vaccine studies. Cytotoxicity tests revealed that the R-NP formulation did not induce cytotoxicity in fibroblast cells and enhanced NO production in macrophages, indicating its potential for vaccine development.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad84fe","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoparticle-based antigen carrier systems have become a significant area of research with the advancement of nanotechnology. Biodegradable polymers have emerged as particularly promising carrier vehicles due to their ability to address the limitations of existing vaccine systems. In this study, we successfully encapsulated the G5-24 linear peptide, located between amino acids 253 and 275 in the primary sequence of the rabies virus G protein, into biodegradable and biocompatible PLGA copolymer using the double emulsion solvent evaporation method. The resulting nanoparticles had a size of approximately 230.9 ± 0.9074 nm, with a PDI value of 0.168 ± 0.017 and a zeta potential value of -9.86 ± 0.132 mV. SEM images confirmed that the synthesized nanoparticles were uniform in size and distribution. Additionally, FTIR spectra indicated successful peptide loading into the nanoparticles. The encapsulation efficiency of the peptide-loaded nanoparticles was 73.3%, with a peptide loading capacity of 48.2% and a reaction yield of 30.4%. Peptide release studies demonstrated that 65.55% of the peptide was released in a controlled manner over 28 d, following a 'biphasic burst release' profile consistent with the degradation profile of PLGA. This controlled release is particularly beneficial for vaccine studies. Cytotoxicity tests revealed that the R-NP formulation did not induce cytotoxicity in fibroblast cells and enhanced NO production in macrophages, indicating its potential for vaccine development.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.