Study on the effects of strain and electrostatic doping on the magnetic anisotropy of GaN/VTe2van der waals heterostructure.

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanotechnology Pub Date : 2024-10-16 DOI:10.1088/1361-6528/ad8450
Junjun Xue, Wei Chen, Shanwen Hu, Zhouyu Chen, Haoyu Fang, Ting Zhi, Pengfei Shao, Qing Cai, Guofeng Yang, Yan Gu, Jin Wang, Dunjun Chen
{"title":"Study on the effects of strain and electrostatic doping on the magnetic anisotropy of GaN/VTe<sub>2</sub>van der waals heterostructure.","authors":"Junjun Xue, Wei Chen, Shanwen Hu, Zhouyu Chen, Haoyu Fang, Ting Zhi, Pengfei Shao, Qing Cai, Guofeng Yang, Yan Gu, Jin Wang, Dunjun Chen","doi":"10.1088/1361-6528/ad8450","DOIUrl":null,"url":null,"abstract":"<p><p>Using a first-principles approach, this study delves into the effects of strain and electrostatic doping on the electronic and magnetic properties of the GaN/VTe<sub>2</sub>van der Waals (vdW) heterostructure. The results reveal that when the GaN/VTe<sub>2</sub>vdW heterostructure is doped with 0.1<i>h</i>/0.2<i>h</i>of electrostatic charge, its magnetization direction undergoes a remarkable reversal, shifting from out-of-plane orientation to in-plane direction. Therefore, we conduct a thorough investigation into the influence of electron orbitals on magnetic anisotropy energy. In addition, as the strain changes from -1% to 1%, the 100% spin polarization region of the GaN/VTe<sub>2</sub>vdW heterostructure becomes smaller. It is worth noting that at a doping concentration of 0.1<i>h</i>, the GaN/VTe<sub>2</sub>vdW heterostructure has a Curie temperature of 30 K above room temperature. This comprehensive study provides valuable insights and provides a reference for analyzing the electronic and magnetic properties of low-dimensional systems.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad8450","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Using a first-principles approach, this study delves into the effects of strain and electrostatic doping on the electronic and magnetic properties of the GaN/VTe2van der Waals (vdW) heterostructure. The results reveal that when the GaN/VTe2vdW heterostructure is doped with 0.1h/0.2hof electrostatic charge, its magnetization direction undergoes a remarkable reversal, shifting from out-of-plane orientation to in-plane direction. Therefore, we conduct a thorough investigation into the influence of electron orbitals on magnetic anisotropy energy. In addition, as the strain changes from -1% to 1%, the 100% spin polarization region of the GaN/VTe2vdW heterostructure becomes smaller. It is worth noting that at a doping concentration of 0.1h, the GaN/VTe2vdW heterostructure has a Curie temperature of 30 K above room temperature. This comprehensive study provides valuable insights and provides a reference for analyzing the electronic and magnetic properties of low-dimensional systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应变和静电掺杂对 GaN/VTe2 范德华异质结构磁各向异性的影响研究。
本研究采用第一原理方法,深入探讨了应变和静电掺杂对 GaN/VTe2 范德瓦尔斯异质结构的电子和磁特性的影响。研究结果表明,当 GaN/VTe2 范德瓦尔斯异质结构掺杂 0.1h/0.2hof 静电荷时,其磁化方向会发生显著逆转,从面外方向转变为面内方向。因此,我们深入研究了电子轨道对磁各向异性能量的影响。此外,当应变从-1%变为1%时,GaN/VTe2vdW异质结构的100%自旋极化区域变小。值得注意的是,在掺杂浓度为 0.1h 时,GaN/VTe2vdW 异质结构的居里温度比室温高出 30 K。这项全面的研究提供了宝贵的见解,为分析低维系统的电子和磁性能提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
期刊最新文献
Flexible pressure sensor with metallic reinforcement and graphene nanowalls for wearable electronics device. Thermal conductivity suppression in ZnO with AlZn2O4and ZnP2for thermoelectric applications. Focus on Institute of Applied Physics at Seoul National University. Magnetic domain wall and skyrmion manipulation by static and dynamic strain profiles. Single vertical InP nanowire diodes with low ideality factors contacted in-array for high-resolution optoelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1