Joanna Triscott, Marika Lehner, Andrej Benjak, Matthias Reist, Brooke M Emerling, Charlotte K Y Ng, Simone de Brot, Mark A Rubin
{"title":"Loss of PI5P4Kα slows the progression of a Pten mutant basal cell model of prostate cancer.","authors":"Joanna Triscott, Marika Lehner, Andrej Benjak, Matthias Reist, Brooke M Emerling, Charlotte K Y Ng, Simone de Brot, Mark A Rubin","doi":"10.1158/1541-7786.MCR-24-0290","DOIUrl":null,"url":null,"abstract":"<p><p>While early prostate cancer (PCa) depends on the androgen receptor (AR) signaling pathway, which is predominant in luminal cells, there is much to be understood about the contribution of epithelial basal cells in cancer progression. Herein, we observe cell-type specific differences in the importance of the metabolic enzyme phosphatidylinositol 5-phosphate 4-kinase alpha (PI5P4Kα β ; gene name PIP4K2A) in the prostate epithelium. We report the development of a basal-cell-specific genetically engineered mouse model (GEMM) targeting Pip4k2a alone or in combination with the tumor suppressor phosphatase and tensin homolog (Pten). PI5P4Kα is enriched in basal cells, and no major histopathological changes were detectable following gene deletion. Notably, the combined loss of Pip4k2a slowed the development of Pten mutant mouse prostatic intraepithelial neoplasia (mPIN). Through the inclusion of a lineage tracing reporter, we utilize single-cell RNA sequencing to evaluate changes resulting from in vivo downregulation of Pip4k2a and characterize cell populations influenced in the established Probasin-Cre and Cytokeratin 5 (CK5)-Cre driven GEMMs. Transcriptomic pathway analysis points towards the disruption of lipid metabolism as a mechanism for reduced tumor progression. This was functionally supported by shifts of carnitine lipids in LNCaP PCa cells treated with siPIP4K2A. Overall, these data nominate PI5P4Kα as a target for PTEN mutant PCa. Implications: PI5P4Kα is enriched in prostate basal cells and its targeted loss slows the progression of a model of advanced PCa.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1541-7786.MCR-24-0290","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
While early prostate cancer (PCa) depends on the androgen receptor (AR) signaling pathway, which is predominant in luminal cells, there is much to be understood about the contribution of epithelial basal cells in cancer progression. Herein, we observe cell-type specific differences in the importance of the metabolic enzyme phosphatidylinositol 5-phosphate 4-kinase alpha (PI5P4Kα β ; gene name PIP4K2A) in the prostate epithelium. We report the development of a basal-cell-specific genetically engineered mouse model (GEMM) targeting Pip4k2a alone or in combination with the tumor suppressor phosphatase and tensin homolog (Pten). PI5P4Kα is enriched in basal cells, and no major histopathological changes were detectable following gene deletion. Notably, the combined loss of Pip4k2a slowed the development of Pten mutant mouse prostatic intraepithelial neoplasia (mPIN). Through the inclusion of a lineage tracing reporter, we utilize single-cell RNA sequencing to evaluate changes resulting from in vivo downregulation of Pip4k2a and characterize cell populations influenced in the established Probasin-Cre and Cytokeratin 5 (CK5)-Cre driven GEMMs. Transcriptomic pathway analysis points towards the disruption of lipid metabolism as a mechanism for reduced tumor progression. This was functionally supported by shifts of carnitine lipids in LNCaP PCa cells treated with siPIP4K2A. Overall, these data nominate PI5P4Kα as a target for PTEN mutant PCa. Implications: PI5P4Kα is enriched in prostate basal cells and its targeted loss slows the progression of a model of advanced PCa.
期刊介绍:
Molecular Cancer Research publishes articles describing novel basic cancer research discoveries of broad interest to the field. Studies must be of demonstrated significance, and the journal prioritizes analyses performed at the molecular and cellular level that reveal novel mechanistic insight into pathways and processes linked to cancer risk, development, and/or progression. Areas of emphasis include all cancer-associated pathways (including cell-cycle regulation; cell death; chromatin regulation; DNA damage and repair; gene and RNA regulation; genomics; oncogenes and tumor suppressors; signal transduction; and tumor microenvironment), in addition to studies describing new molecular mechanisms and interactions that support cancer phenotypes. For full consideration, primary research submissions must provide significant novel insight into existing pathway functions or address new hypotheses associated with cancer-relevant biologic questions.