Systemic neurophysiological entrainment to behaviorally relevant rhythmic stimuli.

IF 2.2 Q3 PHYSIOLOGY Physiological Reports Pub Date : 2024-10-01 DOI:10.14814/phy2.70079
Manuel Muñoz-Caracuel, Vanesa Muñoz, Francisco J Ruiz-Martínez, Antonio J Vázquez Morejón, Carlos M Gómez
{"title":"Systemic neurophysiological entrainment to behaviorally relevant rhythmic stimuli.","authors":"Manuel Muñoz-Caracuel, Vanesa Muñoz, Francisco J Ruiz-Martínez, Antonio J Vázquez Morejón, Carlos M Gómez","doi":"10.14814/phy2.70079","DOIUrl":null,"url":null,"abstract":"<p><p>Physiological oscillations, such as those involved in brain activity, heartbeat, and respiration, display inherent rhythmicity across various timescales. However, adaptive behavior arises from the interaction between these intrinsic rhythms and external environmental cues. In this study, we used multimodal neurophysiological recordings, simultaneously capturing signals from the central and autonomic nervous systems (CNS and ANS), to explore the dynamics of brain and body rhythms in response to rhythmic auditory stimulation across three conditions: baseline (no auditory stimulation), passive auditory processing, and active auditory processing (discrimination task). Our findings demonstrate that active engagement with auditory stimulation synchronizes both CNS and ANS rhythms with the external rhythm, unlike passive and baseline conditions, as evidenced by power spectral density (PSD) and coherence analyses. Importantly, phase angle analysis revealed a consistent alignment across participants between their physiological oscillatory phases at stimulus or response onsets. This alignment was associated with reaction times, suggesting that certain phases of physiological oscillations are spontaneously prioritized across individuals due to their adaptive role in sensorimotor behavior. These results highlight the intricate interplay between CNS and ANS rhythms in optimizing sensorimotor responses to environmental demands, suggesting a potential mechanism of embodied predictive processing.</p>","PeriodicalId":20083,"journal":{"name":"Physiological Reports","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461278/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14814/phy2.70079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Physiological oscillations, such as those involved in brain activity, heartbeat, and respiration, display inherent rhythmicity across various timescales. However, adaptive behavior arises from the interaction between these intrinsic rhythms and external environmental cues. In this study, we used multimodal neurophysiological recordings, simultaneously capturing signals from the central and autonomic nervous systems (CNS and ANS), to explore the dynamics of brain and body rhythms in response to rhythmic auditory stimulation across three conditions: baseline (no auditory stimulation), passive auditory processing, and active auditory processing (discrimination task). Our findings demonstrate that active engagement with auditory stimulation synchronizes both CNS and ANS rhythms with the external rhythm, unlike passive and baseline conditions, as evidenced by power spectral density (PSD) and coherence analyses. Importantly, phase angle analysis revealed a consistent alignment across participants between their physiological oscillatory phases at stimulus or response onsets. This alignment was associated with reaction times, suggesting that certain phases of physiological oscillations are spontaneously prioritized across individuals due to their adaptive role in sensorimotor behavior. These results highlight the intricate interplay between CNS and ANS rhythms in optimizing sensorimotor responses to environmental demands, suggesting a potential mechanism of embodied predictive processing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与行为相关的节律性刺激的系统神经生理学诱导。
生理振荡,如大脑活动、心跳和呼吸中的振荡,在不同的时间尺度上显示出固有的节律性。然而,适应行为产生于这些内在节律与外部环境线索之间的相互作用。在这项研究中,我们利用多模态神经生理学记录,同时捕捉中枢神经系统和自律神经系统(CNS 和 ANS)的信号,探讨了大脑和身体节律在三种条件下对有节奏的听觉刺激的动态响应:基线(无听觉刺激)、被动听觉处理和主动听觉处理(辨别任务)。我们的研究结果表明,与被动和基线条件不同,主动参与听觉刺激能使中枢神经系统和自律神经系统的节奏与外部节奏同步,这一点在功率谱密度(PSD)和相干性分析中得到了证明。重要的是,相位角分析显示,不同参与者在刺激或反应开始时的生理振荡相位一致。这种一致性与反应时间相关,表明生理振荡的某些相位由于其在感觉运动行为中的适应性作用而在不同个体中自发地被优先考虑。这些结果突显了中枢神经系统和自律神经系统节律在优化对环境需求的感觉运动反应方面错综复杂的相互作用,表明了一种潜在的具身预测处理机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiological Reports
Physiological Reports PHYSIOLOGY-
CiteScore
4.20
自引率
4.00%
发文量
374
审稿时长
9 weeks
期刊介绍: Physiological Reports is an online only, open access journal that will publish peer reviewed research across all areas of basic, translational, and clinical physiology and allied disciplines. Physiological Reports is a collaboration between The Physiological Society and the American Physiological Society, and is therefore in a unique position to serve the international physiology community through quick time to publication while upholding a quality standard of sound research that constitutes a useful contribution to the field.
期刊最新文献
Exploring the impact of occupational exposure: A study on cardiovascular autonomic functions of male gas station attendants in Sri Lanka. Physiologists as medical scientists: An early warning from the German academic system. Examining the effect of salbutamol use in ozone air pollution by people with exercise-induced bronchoconstriction. Reverse epidemiology of obesity paradox: Fact or fiction? Spinal pain prevalence and associated determinants: A population-based study using the National Survey for Wales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1