Exercise to combat cancer: focusing on the ends.

IF 2.5 4区 生物学 Q3 CELL BIOLOGY Physiological genomics Pub Date : 2024-10-07 DOI:10.1152/physiolgenomics.00075.2024
Josha Denham, Edward S Bliss, Tracy M Bryan, Brendan J O'Brien, Dean Mills
{"title":"Exercise to combat cancer: focusing on the ends.","authors":"Josha Denham, Edward S Bliss, Tracy M Bryan, Brendan J O'Brien, Dean Mills","doi":"10.1152/physiolgenomics.00075.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer remains a leading cause of death worldwide and although prognosis and survivorship after therapy has improved significantly, current cancer treatments have long-term health consequences. For decades telomerase-mediated telomere maintenance has been an attractive anti-cancer therapeutic target due to its abundance and role in telomere maintenance, pathogenesis and growth in neoplasms. Telomere maintenance-specific cancer therapies, however, are marred by off target side-effects that must be addressed before they reach clinical practice. Regular exercise training is associated with telomerase-mediated telomere maintenance in healthy cells, which is associated with healthy ageing. A single bout of endurance exercise training dynamically, but temporarily, increases <i>TERT</i> mRNA and telomerase activity, as well as several molecules that control genomic stability and telomere length (i.e., shelterin and TERRA). Considering the epidemiological findings and accumulating research highlighting that exercise significantly reduces the risk of many types of cancers and the anti-carcinogenic effects of exercise on tumour growth <i>in vitro</i>, investigating the governing molecular mechanisms of telomerase control in context with exercise and cancer may provide important new insights to explain these findings. Specifically, the molecular mechanisms controlling telomerase in both healthy cells and tumours after exercise could reveal novel therapeutic targets for tumour-specific telomere maintenance and offer important evidence that could refine current physical activity and exercise guidelines for all stages of cancer care.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00075.2024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer remains a leading cause of death worldwide and although prognosis and survivorship after therapy has improved significantly, current cancer treatments have long-term health consequences. For decades telomerase-mediated telomere maintenance has been an attractive anti-cancer therapeutic target due to its abundance and role in telomere maintenance, pathogenesis and growth in neoplasms. Telomere maintenance-specific cancer therapies, however, are marred by off target side-effects that must be addressed before they reach clinical practice. Regular exercise training is associated with telomerase-mediated telomere maintenance in healthy cells, which is associated with healthy ageing. A single bout of endurance exercise training dynamically, but temporarily, increases TERT mRNA and telomerase activity, as well as several molecules that control genomic stability and telomere length (i.e., shelterin and TERRA). Considering the epidemiological findings and accumulating research highlighting that exercise significantly reduces the risk of many types of cancers and the anti-carcinogenic effects of exercise on tumour growth in vitro, investigating the governing molecular mechanisms of telomerase control in context with exercise and cancer may provide important new insights to explain these findings. Specifically, the molecular mechanisms controlling telomerase in both healthy cells and tumours after exercise could reveal novel therapeutic targets for tumour-specific telomere maintenance and offer important evidence that could refine current physical activity and exercise guidelines for all stages of cancer care.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
运动抗癌:关注目的。
癌症仍然是全球死亡的主要原因之一,尽管治疗后的预后和存活率有了明显改善,但目前的癌症治疗仍会对健康造成长期影响。几十年来,端粒酶介导的端粒维持一直是一个极具吸引力的抗癌治疗靶点,因为端粒酶在端粒维持、发病机制和肿瘤生长方面具有丰富的资源和作用。然而,端粒维持特异性癌症疗法却存在脱靶副作用,在进入临床实践之前必须解决这些问题。定期运动训练与健康细胞中端粒酶介导的端粒维持有关,而端粒维持与健康老龄化有关。单次耐力运动训练可动态但暂时地增加TERT mRNA和端粒酶活性,以及控制基因组稳定性和端粒长度的几种分子(即shelterin和TERRA)。考虑到流行病学发现和不断积累的研究强调运动能显著降低多种癌症的风险,以及运动在体外对肿瘤生长的抗癌作用,结合运动和癌症研究端粒酶控制的分子机制可能会为解释这些发现提供重要的新见解。具体来说,运动后控制健康细胞和肿瘤中端粒酶的分子机制可以揭示肿瘤特异性端粒维护的新治疗靶点,并提供重要证据来完善目前针对癌症治疗各个阶段的体育锻炼指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiological genomics
Physiological genomics 生物-生理学
CiteScore
6.10
自引率
0.00%
发文量
46
审稿时长
4-8 weeks
期刊介绍: The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.
期刊最新文献
Exercise and tumor proteome: insights from a neuroblastoma model. A long-term high-fat diet induces differential gene expression changes in spatially distinct adipose tissue of male mice. Three decades of rat genomics: approaching the finish(ed) line. Differences in gut microbiota and metabolites between wrestlers with varying precompetition weight control effect. Ameliorating Immune-dependent Inflammation and Apoptosis by Targeting TLR4/MYD88/NF-ᵰ5B Pathway by Celastrol Mitigates the Diabetic Reproductive Dysfunction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1