首页 > 最新文献

Physiological genomics最新文献

英文 中文
Integrated Analysis of Methylome and Transcriptome Responses to Exercise Training in Children with Overweight/Obesity.
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-01-03 DOI: 10.1152/physiolgenomics.00059.2024
Abel Plaza-Florido, Augusto Anguita-Ruiz, Francisco J Esteban, Concepción M Aguilera, Idoia Labayen, Stefan Markus Reitzner, Carl Johan Sundberg, Shlomit Radom-Aizik, Francisco B Ortega, Signe Altmäe

We examined the effects of a 20-week exercise intervention on whole-blood genome-wide DNA methylation signature and its association with the exercise-induced changes in gene expression profiles in boys and girls with overweight/obesity (OW/OB). Twenty-three children (10.05 ± 1.39 years, 56% girls) with OW/OB, were randomized to either a 20-week exercise intervention (exercise group [EG]; n=10; 4 boys/ 6 girls), or to usual lifestyle (control group [CG] (n=13; 6 boys/ 7 girls). Whole-blood genome-wide methylome (CpG sites) analysis using Infinium Methylation EPIC array and transcriptome analysis using RNA-seq (STRT2 protocol) were performed. Exercise induced modifications in DNA methylation at 485 and 386 CpGs sites in boys and girls respectively. These CpG sites mapped to loci enriched in distinct gene pathways related to metabolic diseases, fatty acid metabolism, and immune function. In boys, changes in the DNA methylation of 87 CpG sites (18% of the 485 CpGs sites altered by exercise) were associated with changes in the gene expression levels of 51 genes also regulated by exercise. Among girls, changes in DNA methylation at 46 CpG sites (12% of the initial 386 significant CpGs) were associated with changes in the expression levels of 30 exercise-affected genes. Genes affected by exercise that were associated with DNA methylation are related to obesity, metabolic syndrome, and inflammation. Multi-omics analysis of whole-blood samples from children with OW/OB, suggests that gene expression response to exercise may be modulated by DNA methylation and involve gene pathways related to metabolism and immune functions.

{"title":"Integrated Analysis of Methylome and Transcriptome Responses to Exercise Training in Children with Overweight/Obesity.","authors":"Abel Plaza-Florido, Augusto Anguita-Ruiz, Francisco J Esteban, Concepción M Aguilera, Idoia Labayen, Stefan Markus Reitzner, Carl Johan Sundberg, Shlomit Radom-Aizik, Francisco B Ortega, Signe Altmäe","doi":"10.1152/physiolgenomics.00059.2024","DOIUrl":"https://doi.org/10.1152/physiolgenomics.00059.2024","url":null,"abstract":"<p><p>We examined the effects of a 20-week exercise intervention on whole-blood genome-wide DNA methylation signature and its association with the exercise-induced changes in gene expression profiles in boys and girls with overweight/obesity (OW/OB). Twenty-three children (10.05 ± 1.39 years, 56% girls) with OW/OB, were randomized to either a 20-week exercise intervention (exercise group [EG]; n=10; 4 boys/ 6 girls), or to usual lifestyle (control group [CG] (n=13; 6 boys/ 7 girls). Whole-blood genome-wide methylome (CpG sites) analysis using Infinium Methylation EPIC array and transcriptome analysis using RNA-seq (STRT2 protocol) were performed. Exercise induced modifications in DNA methylation at 485 and 386 CpGs sites in boys and girls respectively. These CpG sites mapped to loci enriched in distinct gene pathways related to metabolic diseases, fatty acid metabolism, and immune function. In boys, changes in the DNA methylation of 87 CpG sites (18% of the 485 CpGs sites altered by exercise) were associated with changes in the gene expression levels of 51 genes also regulated by exercise. Among girls, changes in DNA methylation at 46 CpG sites (12% of the initial 386 significant CpGs) were associated with changes in the expression levels of 30 exercise-affected genes. Genes affected by exercise that were associated with DNA methylation are related to obesity, metabolic syndrome, and inflammation. Multi-omics analysis of whole-blood samples from children with OW/OB, suggests that gene expression response to exercise may be modulated by DNA methylation and involve gene pathways related to metabolism and immune functions.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142922710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MYL9 binding with MYO19 suppresses epithelial-mesenchymal transition in non-small-cell lung cancer. MYL9 与 MYO19 结合可抑制非小细胞肺癌的上皮-间质转化。
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-10-22 DOI: 10.1152/physiolgenomics.00119.2024
Meiling Sheng, Qunzhi Wang, Yabo Lou, Yuanchao Xiao, Xiaoming Wu

The elusive function of myosin light chain 9 (MYL9) in cancer is an area ripe for further investigation. Bioinformatics was used to compare the expression levels of MYL9 in non-small-cell lung cancer (NSCLC) and normal tissues. Gene set enrichment analysis was used to investigate the pathways associated with MYL9. The BioGRID database was used to screen for potential targets of MYL9. The expression of MYL9 and myosin 19 (MYO19) mRNA was quantified using quantitative reverse transcriptase PCR. Cell migration was assessed using a scratch wound healing assay. The protein levels of MYL9, MYO19, and epithelial-mesenchymal transition (EMT) biomarkers were examined using Western blot (WB). Epithelial cell adhesion molecule (EpCAM) expression in different cell groups was profiled using flow cytometry analysis. Coimmunoprecipitation assays were performed to determine the binding affinity between MYL9 and MYO19. In addition, the direct protein interaction between MYL9 and MYO19 was explored using a glutathione-S-transferase (GST) pull-down assay. In NSCLC patients, MYL9 was significantly downregulated both in vivo and in cell cultures and had a high enrichment score in the EMT pathway. Scratch assays pointed to its inhibitory effect on cancer cell migration. WB showed that MYL9 could suppress EMT marker protein expression in NSCLC cells. Flow cytometry found that MYL9 greatly reduced the distribution of EpCAM on the cell surface. MYO19 was pinpointed as a potential target of MYL9, as confirmed by coimmunoprecipitation and GST pull-down assays. Rescue experiments confirmed that MYO19 could enhance cell migration, promote the expression of EMT markers, and increase EpCAM levels on the cell surface, but these effects were reserved by MYL9 overexpression. MYL9 impedes the migration and EMT in NSCLC cells by binding to MYO19.NEW & NOTEWORTHY Myosin light chain 9 (MYL9) is downregulated in non-small-cell lung cancer (NSCLC). MYL9 suppresses epithelial-mesenchymal transition (EMT) in NSCLC cells. MYL9 binds to myosin 19 (MYO19). MYL9/MYO19 signaling inhibits EMT in NSCLC.

背景:肌球蛋白轻链 9 (MYL9)在癌症中难以捉摸的功能是一个有待进一步研究的领域:方法:利用生物信息学比较了MYL9在非小细胞肺癌(NSCLC)和正常组织中的表达水平。采用基因组富集分析(GSEA)研究与MYL9相关的通路。利用BioGRID数据库筛选MYL9的潜在靶点。采用定量反转录酶PCR技术对MYL9和肌球蛋白19(MYO19)mRNA的表达进行定量。细胞迁移采用划痕伤口愈合试验进行评估。采用Western印迹(WB)检测MYL9、MYO19和上皮-间质转化(EMT)生物标志物的蛋白水平。流式细胞术分析了不同细胞组中 EpCAM 的表达情况。进行了共免疫共沉淀试验,以确定 MYL9 和 MYO19 之间的结合亲和力。此外,还利用GST-拉低试验探讨了MYL9和MYO19之间的直接蛋白质相互作用:结果:在 NSCLC 患者中,MYL9 在体内和细胞培养中均显著下调,并在 EMT 通路中高度富集。划痕实验表明其对细胞迁移有抑制作用。Western 印迹显示,MYL9 可抑制 NSCLC 细胞中 EMT 标记蛋白的表达。流式细胞术显示,MYL9降低了细胞表面的EpCAM水平。通过 CoIP 和 GST-拉低试验,MYO19 被确定为 MYL9 的潜在靶标。拯救实验表明,MYO19可增强细胞迁移、EMT标记物表达和EpCAM水平,但MYL9的过表达可抵消这些效应:结论:MYL9通过与MYO19结合阻碍了NSCLC细胞的迁移和EMT。
{"title":"MYL9 binding with MYO19 suppresses epithelial-mesenchymal transition in non-small-cell lung cancer.","authors":"Meiling Sheng, Qunzhi Wang, Yabo Lou, Yuanchao Xiao, Xiaoming Wu","doi":"10.1152/physiolgenomics.00119.2024","DOIUrl":"10.1152/physiolgenomics.00119.2024","url":null,"abstract":"<p><p>The elusive function of myosin light chain 9 (MYL9) in cancer is an area ripe for further investigation. Bioinformatics was used to compare the expression levels of MYL9 in non-small-cell lung cancer (NSCLC) and normal tissues. Gene set enrichment analysis was used to investigate the pathways associated with MYL9. The BioGRID database was used to screen for potential targets of MYL9. The expression of MYL9 and myosin 19 (MYO19) mRNA was quantified using quantitative reverse transcriptase PCR. Cell migration was assessed using a scratch wound healing assay. The protein levels of MYL9, MYO19, and epithelial-mesenchymal transition (EMT) biomarkers were examined using Western blot (WB). Epithelial cell adhesion molecule (EpCAM) expression in different cell groups was profiled using flow cytometry analysis. Coimmunoprecipitation assays were performed to determine the binding affinity between MYL9 and MYO19. In addition, the direct protein interaction between MYL9 and MYO19 was explored using a glutathione-S-transferase (GST) pull-down assay. In NSCLC patients, MYL9 was significantly downregulated both in vivo and in cell cultures and had a high enrichment score in the EMT pathway. Scratch assays pointed to its inhibitory effect on cancer cell migration. WB showed that MYL9 could suppress EMT marker protein expression in NSCLC cells. Flow cytometry found that MYL9 greatly reduced the distribution of EpCAM on the cell surface. MYO19 was pinpointed as a potential target of MYL9, as confirmed by coimmunoprecipitation and GST pull-down assays. Rescue experiments confirmed that MYO19 could enhance cell migration, promote the expression of EMT markers, and increase EpCAM levels on the cell surface, but these effects were reserved by MYL9 overexpression. MYL9 impedes the migration and EMT in NSCLC cells by binding to MYO19.<b>NEW & NOTEWORTHY</b> Myosin light chain 9 (MYL9) is downregulated in non-small-cell lung cancer (NSCLC). MYL9 suppresses epithelial-mesenchymal transition (EMT) in NSCLC cells. MYL9 binds to myosin 19 (MYO19). MYL9/MYO19 signaling inhibits EMT in NSCLC.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"1-7"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maternal-fetal interfaces transcriptome changes associated with placental insufficiency and a novel gene therapy intervention. 与胎盘功能不全有关的母胎界面转录组变化和一种新型基因治疗干预方法。
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2025-01-01 Epub Date: 2024-10-07 DOI: 10.1152/physiolgenomics.00131.2024
Helen N Jones, Baylea N Davenport, Rebecca L Wilson

The etiology of fetal growth restriction (FGR) is multifactorial, although many cases often involve placental insufficiency. Placental insufficiency is associated with inadequate trophoblast invasion, resulting in high resistance to blood flow, decreased availability of nutrients, and increased hypoxia. We have developed a nonviral, polymer-based nanoparticle that facilitates delivery and transient gene expression of human insulin-like 1 growth factor (hIGF1) in placental trophoblast for the treatment of placenta insufficiency and FGR. Using the established guinea pig maternal nutrient restriction (MNR) model of placental insufficiency and FGR, the aim of the study was to identify novel pathways in the subplacenta/decidua that provide insight into the underlying mechanism driving placental insufficiency and may be corrected with hIGF1 nanoparticle treatment. Pregnant guinea pigs underwent ultrasound-guided sham or hIGF1 nanoparticle treatment at midpregnancy, and subplacenta/decidua tissue was collected 5 days later. Transcriptome analysis was performed using RNA Sequencing on the Illumina platform. The MNR subplacenta/decidua demonstrated fewer maternal spiral arteries lined by trophoblast, shallower trophoblast invasion, and downregulation of genelists involved in the regulation of cell migration. hIGF1 nanoparticle treatment resulted in marked changes to transporter activity in the MNR + hIGF1 subplacenta/decidua when compared with sham MNR. Under normal growth conditions however, hIGF1 nanoparticle treatment decreased genelists enriched for kinase signaling pathways and increased genelists enriched for proteolysis, indicative of homeostasis. Overall, this study identified changes to the subplacenta/decidua transcriptome that likely result in inadequate trophoblast invasion and increases our understanding of pathways that hIGF1 nanoparticle treatment acts on to restore or maintain appropriate placenta function.NEW & NOTEWORTHY Placental insufficiency at midpregnancy, established through moderate maternal nutrient restriction, is characterized with fewer maternal spiral arteries lined by trophoblast, shallower trophoblast invasion, and downregulation of genelists involved in the regulation of cell migration. Treatment of placenta insufficiency with a hIGF1 nanoparticle results in marked changes to transporter activity and increases our mechanistic understanding of how therapies designed to improve fetal growth may impact the placenta.

胎儿生长受限(FGR)的病因是多因素的,但许多病例涉及胎盘功能不全。胎盘功能不全与滋养层侵入不足有关,滋养层侵入不足会导致血流阻力增大、营养供应减少和缺氧加剧。我们开发了一种基于聚合物的非病毒纳米粒子,可促进人胰岛素样 1 生长因子(hIGF1)在滋养细胞中的传递和瞬时基因表达,用于治疗胎盘功能不全和妊娠合并绒毛膜促性腺激素(FGR)。该研究利用已建立的豚鼠母体营养限制(MNR)胎盘功能不全模型,旨在确定胎盘下/蜕膜中的新通路,以深入了解驱动胎盘功能不全的潜在机制,并通过 hIGF1 纳米粒子治疗加以纠正。妊娠豚鼠在妊娠中期接受超声引导下的假治疗或 hIGF1 纳米粒子治疗,5 天后收集胎盘下/蜕膜组织。利用 Illumina 平台上的 RNA 测序技术进行转录组分析。与假MNR相比,hIGF1纳米颗粒处理导致MNR + hIGF1亚前置胎盘/蜕膜的转运体活性发生明显变化。然而,在正常生长条件下,hIGF1 纳米粒子处理减少了富含激酶信号通路的基因列表,而增加了富含蛋白水解的基因列表,这表明了体内平衡。总之,这项研究确定了可能导致滋养细胞侵袭不足的胎盘下/蜕膜转录组的变化,并增加了我们对 hIGF1 纳米粒子治疗作用于恢复或维持适当胎盘功能的途径的了解。
{"title":"Maternal-fetal interfaces transcriptome changes associated with placental insufficiency and a novel gene therapy intervention.","authors":"Helen N Jones, Baylea N Davenport, Rebecca L Wilson","doi":"10.1152/physiolgenomics.00131.2024","DOIUrl":"10.1152/physiolgenomics.00131.2024","url":null,"abstract":"<p><p>The etiology of fetal growth restriction (FGR) is multifactorial, although many cases often involve placental insufficiency. Placental insufficiency is associated with inadequate trophoblast invasion, resulting in high resistance to blood flow, decreased availability of nutrients, and increased hypoxia. We have developed a nonviral, polymer-based nanoparticle that facilitates delivery and transient gene expression of human insulin-like 1 growth factor (<i>hIGF1</i>) in placental trophoblast for the treatment of placenta insufficiency and FGR. Using the established guinea pig maternal nutrient restriction (MNR) model of placental insufficiency and FGR, the aim of the study was to identify novel pathways in the subplacenta/decidua that provide insight into the underlying mechanism driving placental insufficiency and may be corrected with <i>hIGF1</i> nanoparticle treatment. Pregnant guinea pigs underwent ultrasound-guided sham or <i>hIGF1</i> nanoparticle treatment at midpregnancy, and subplacenta/decidua tissue was collected 5 days later. Transcriptome analysis was performed using RNA Sequencing on the Illumina platform. The MNR subplacenta/decidua demonstrated fewer maternal spiral arteries lined by trophoblast, shallower trophoblast invasion, and downregulation of genelists involved in the regulation of cell migration. <i>hIGF1</i> nanoparticle treatment resulted in marked changes to transporter activity in the MNR + <i>hIGF1</i> subplacenta/decidua when compared with sham MNR. Under normal growth conditions however, <i>hIGF1</i> nanoparticle treatment decreased genelists enriched for kinase signaling pathways and increased genelists enriched for proteolysis, indicative of homeostasis. Overall, this study identified changes to the subplacenta/decidua transcriptome that likely result in inadequate trophoblast invasion and increases our understanding of pathways that <i>hIGF1</i> nanoparticle treatment acts on to restore or maintain appropriate placenta function.<b>NEW & NOTEWORTHY</b> Placental insufficiency at midpregnancy, established through moderate maternal nutrient restriction, is characterized with fewer maternal spiral arteries lined by trophoblast, shallower trophoblast invasion, and downregulation of genelists involved in the regulation of cell migration. Treatment of placenta insufficiency with a <i>hIGF1</i> nanoparticle results in marked changes to transporter activity and increases our mechanistic understanding of how therapies designed to improve fetal growth may impact the placenta.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"8-15"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Age-related differences in gene expression and pathway activation following heat stroke.
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-12-24 DOI: 10.1152/physiolgenomics.00053.2024
Maria Gomez, Saeed Al Mahri, Mashan Abdullah, Shuja Shafi Malik, Saber Yezli, Yara Yassin, Anas Khan, Cynthia Lehe, Sameer Mohammad, Robert Hoehndorf, Abderrezak Bouchama

This study investigates the molecular responses to heat stroke in young and old patients by comparing whole-genome transcriptomes between age groups. We analyzed transcriptomic profiles from patients categorized into two age-defined cohorts: young (mean age = 44.9 ± 6 years) and old (mean age = 66.1 ± 4 years). Control subjects, exposed to similar environmental heat conditions but without developing heat stroke, were also included in the analysis to provide a baseline for comparison. Despite uniform heat stroke severity at admission, as indicated by core body temperature, consciousness level, and organ damage markers, notable gene expression differences emerged. Old patients showed 37% fewer differentially expressed genes compared to young patients at admission, with a shift towards gene upregulation, deviating from the usual downregulation seen in heat stress responses. Both age groups exhibited increased heat shock protein gene expression, activated the heat stress and unfolded protein responses indicating comparable proteotoxic stress. Nonetheless, age-specific differences were evident in critical regulatory pathways like Sirtuin, mTOR, and p53 signaling, along with key pathways related to proteostasis, energy metabolism, oxidative stress, and immune responses. Following cooling, older adults exhibited a decline in the heat stress response and a cessation of the unfolded protein response, in contrast to the sustained responses seen in younger individuals. This pattern suggests an age-related adaptability or a diminished protective response capacity with aging. These findings provide insights into the biological mechanisms that may contribute to age-specific vulnerabilities to heat.

{"title":"Age-related differences in gene expression and pathway activation following heat stroke.","authors":"Maria Gomez, Saeed Al Mahri, Mashan Abdullah, Shuja Shafi Malik, Saber Yezli, Yara Yassin, Anas Khan, Cynthia Lehe, Sameer Mohammad, Robert Hoehndorf, Abderrezak Bouchama","doi":"10.1152/physiolgenomics.00053.2024","DOIUrl":"https://doi.org/10.1152/physiolgenomics.00053.2024","url":null,"abstract":"<p><p>This study investigates the molecular responses to heat stroke in young and old patients by comparing whole-genome transcriptomes between age groups. We analyzed transcriptomic profiles from patients categorized into two age-defined cohorts: young (mean age = 44.9 ± 6 years) and old (mean age = 66.1 ± 4 years). Control subjects, exposed to similar environmental heat conditions but without developing heat stroke, were also included in the analysis to provide a baseline for comparison. Despite uniform heat stroke severity at admission, as indicated by core body temperature, consciousness level, and organ damage markers, notable gene expression differences emerged. Old patients showed 37% fewer differentially expressed genes compared to young patients at admission, with a shift towards gene upregulation, deviating from the usual downregulation seen in heat stress responses. Both age groups exhibited increased heat shock protein gene expression, activated the heat stress and unfolded protein responses indicating comparable proteotoxic stress. Nonetheless, age-specific differences were evident in critical regulatory pathways like Sirtuin, mTOR, and p53 signaling, along with key pathways related to proteostasis, energy metabolism, oxidative stress, and immune responses. Following cooling, older adults exhibited a decline in the heat stress response and a cessation of the unfolded protein response, in contrast to the sustained responses seen in younger individuals. This pattern suggests an age-related adaptability or a diminished protective response capacity with aging. These findings provide insights into the biological mechanisms that may contribute to age-specific vulnerabilities to heat.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiological, biochemical and genome-wide expression patterns during graded normobaric hypoxia in healthy individuals.
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-12-24 DOI: 10.1152/physiolgenomics.00056.2024
Ritu Rani, Rintu Kutum, Deep Shikha Punera, Anand Prakash Yadav, Vishal Bansal, Bhavana Prasher

The regulation of oxygen homeostasis is critical in physiology and disease pathogenesis. High Altitude environment or hypoxia (lack of oxygen) can lead to adverse health conditions such as HAPE despite initial adaptive physiological responses. Studying genetic, hematological and biochemical, and the physiological outcomes of hypoxia together could yield a comprehensive understanding and potentially uncover valuable biomarkers for predicting responses. To this end, healthy individuals (n=51) were recruited and exposed to graded normobaric hypoxia. Physiological parameters such as Heart Rate(HR), Heart Rate Variability(HRV), oxygen saturation(SpO2), and Blood Pressure(BP) were constantly monitored, and a blood sample was collected before and after the hypoxia exposure for the haematological and gene-expression profiles. HR was elevated, and SpO2 and HRV were significantly reduced in a FiO2-dependent manner. After exposure to hypoxia, there was a minimal decrease in HCT, RDW-CV, MPV, Platelet Distribution Width, Plateletcrit, Eosinophils, Lymphocytes and HDL-Cholesterol. Additionally, there was a marginal increase observed in Neutrophils. The effect of hypoxia was further assessed at the genome-wide expression level in a subset of individuals. 82 genes significantly differed after hypoxia exposure, with 46 up-regulated genes and 36 down-regulated genes (p ≤ 0.05 and log2 fold change > ± 0.5). We also conducted an integrative analysis of global gene expression profiles linked with physiological parameters, and we uncovered numerous reliable gene signatures associated with BP, SpO2, HR, and HRV in response to graded normobaric hypoxia.

{"title":"Physiological, biochemical and genome-wide expression patterns during graded normobaric hypoxia in healthy individuals.","authors":"Ritu Rani, Rintu Kutum, Deep Shikha Punera, Anand Prakash Yadav, Vishal Bansal, Bhavana Prasher","doi":"10.1152/physiolgenomics.00056.2024","DOIUrl":"https://doi.org/10.1152/physiolgenomics.00056.2024","url":null,"abstract":"<p><p>The regulation of oxygen homeostasis is critical in physiology and disease pathogenesis. High Altitude environment or hypoxia (lack of oxygen) can lead to adverse health conditions such as HAPE despite initial adaptive physiological responses. Studying genetic, hematological and biochemical, and the physiological outcomes of hypoxia together could yield a comprehensive understanding and potentially uncover valuable biomarkers for predicting responses. To this end, healthy individuals (n=51) were recruited and exposed to graded normobaric hypoxia. Physiological parameters such as Heart Rate(HR), Heart Rate Variability(HRV), oxygen saturation(SpO<sub>2</sub>), and Blood Pressure(BP) were constantly monitored, and a blood sample was collected before and after the hypoxia exposure for the haematological and gene-expression profiles. HR was elevated, and SpO<sub>2</sub> and HRV were significantly reduced in a FiO<sub>2</sub>-dependent manner. After exposure to hypoxia, there was a minimal decrease in HCT, RDW-CV, MPV, Platelet Distribution Width, Plateletcrit, Eosinophils, Lymphocytes and HDL-Cholesterol. Additionally, there was a marginal increase observed in Neutrophils. The effect of hypoxia was further assessed at the genome-wide expression level in a subset of individuals. 82 genes significantly differed after hypoxia exposure, with 46 up-regulated genes and 36 down-regulated genes (p ≤ 0.05 and log<sub>2</sub> fold change > ± 0.5). We also conducted an integrative analysis of global gene expression profiles linked with physiological parameters, and we uncovered numerous reliable gene signatures associated with BP, SpO<sub>2</sub>, HR, and HRV in response to graded normobaric hypoxia.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142882637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low Carbohydrate Availability Promotes a Distinct Circulating microRNA Profile 24 Hours Following Aerobic Exercise.
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-12-11 DOI: 10.1152/physiolgenomics.00107.2024
Devin J Drummer, Christopher T Carrigan, Nancy E Murphy, Marques A Wilson, Julia Michalak, Claire C Whitney, Donato A Rivas, Stefan M Pasiakos, Lee M Margolis

Low carbohydrate availability during recovery from aerobic exercise alters skeletal muscle microRNA (miRNA) profiles, which may mechanistically regulate exercise recovery. However, its impact on circulating miRNA (c-miRNA) profiles remains unclear. Purpose: This study aimed to determine the effects of low versus adequate carbohydrate availability on c-miRNA profiles during recovery from aerobic exercise. Methods: Nine males (22±4yrs, 1.81±0.09m, 83.9±11.9kg, 25.7±2.3kg/m2, mean±SD) completed this randomized, crossover study consisting of two glycogen depletion trials, followed by 24 hours of isocaloric refeeding to induce low (LOW; 1.5 g/kg carbohydrate, 3.0 g/kg fat) or adequate (AD; 6.0 g/kg carbohydrate, 1.0 g/kg fat) carbohydrate availability. Total c-miRNA were extracted from serum 24 hours following glycogen depletion exercise. Data were log transformed and analyzed as fold change relative to AD. Bioinformatics were conducted on significant c-miRNA and associated pathways (miRTarBase/KEGG). Follow-up transfection of miR-375-3p mimic or inhibitor into C2C12 cells assessed metabolic, inflammatory, and catabolic pathways at the gene and protein levels. Results: Of the 84 miRNA assessed, miR-335-5p (-0.49±0.60; P=0.04) and miR-375-3p (-1.57±1.25; P=0.01) were significantly lower, and miR-214-3p (1.76±1.85; P=0.02) was significantly higher in AD versus LOW. In vitro experiments indicated that miR-375-3p regulates catabolic pathways at the gene and protein level. Conclusion: Low carbohydrate availability alters c-miRNA profiles, particularly miR-375-3p, which targets proteostasis and metabolism 24 hours into recovery from aerobic exercise. These findings identify unique c-miRNA targets as potential biomarkers for the mechanistic effects of low carbohydrate availability on exercise recovery.

{"title":"Low Carbohydrate Availability Promotes a Distinct Circulating microRNA Profile 24 Hours Following Aerobic Exercise.","authors":"Devin J Drummer, Christopher T Carrigan, Nancy E Murphy, Marques A Wilson, Julia Michalak, Claire C Whitney, Donato A Rivas, Stefan M Pasiakos, Lee M Margolis","doi":"10.1152/physiolgenomics.00107.2024","DOIUrl":"https://doi.org/10.1152/physiolgenomics.00107.2024","url":null,"abstract":"<p><p>Low carbohydrate availability during recovery from aerobic exercise alters skeletal muscle microRNA (miRNA) profiles, which may mechanistically regulate exercise recovery. However, its impact on circulating miRNA (c-miRNA) profiles remains unclear. <b>Purpose:</b> This study aimed to determine the effects of low versus adequate carbohydrate availability on c-miRNA profiles during recovery from aerobic exercise. <b>Methods:</b> Nine males (22±4yrs, 1.81±0.09m, 83.9±11.9kg, 25.7±2.3kg/m<sup>2</sup>, mean±SD) completed this randomized, crossover study consisting of two glycogen depletion trials, followed by 24 hours of isocaloric refeeding to induce low (LOW; 1.5 g/kg carbohydrate, 3.0 g/kg fat) or adequate (AD; 6.0 g/kg carbohydrate, 1.0 g/kg fat) carbohydrate availability. Total c-miRNA were extracted from serum 24 hours following glycogen depletion exercise. Data were log transformed and analyzed as fold change relative to AD. Bioinformatics were conducted on significant c-miRNA and associated pathways (miRTarBase/KEGG). Follow-up transfection of miR-375-3p mimic or inhibitor into C2C12 cells assessed metabolic, inflammatory, and catabolic pathways at the gene and protein levels. <b>Results:</b> Of the 84 miRNA assessed, miR-335-5p (-0.49±0.60; P=0.04) and miR-375-3p (-1.57±1.25; P=0.01) were significantly lower, and miR-214-3p (1.76±1.85; P=0.02) was significantly higher in AD versus LOW. <i>In vitro</i> experiments indicated that miR-375-3p regulates catabolic pathways at the gene and protein level. <b>Conclusion:</b> Low carbohydrate availability alters c-miRNA profiles, particularly miR-375-3p, which targets proteostasis and metabolism 24 hours into recovery from aerobic exercise. These findings identify unique c-miRNA targets as potential biomarkers for the mechanistic effects of low carbohydrate availability on exercise recovery.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142814111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of long and short rest periods during high-intensity interval exercise on transcriptomic responses in equine skeletal muscle.
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-12-11 DOI: 10.1152/physiolgenomics.00066.2024
Kenya Takahashi, Kazutaka Mukai, Yuji Takahashi, Yusaku Ebisuda, Hideo Hatta, Yu Kitaoka

The purpose of this study was to elucidate the skeletal muscle transcriptomic response unique to rest duration during high-intensity interval exercise. Thoroughbred horses performed three 1-min bouts of exercise at their maximal oxygen uptake (10.7-12.5 m/s), separated by 15 min (long) or 2 min (short) walking at 1.7 m/s. Gluteus medius muscle was collected before and at 4 h after the exercise and used for RNA sequencing. We identified 1,756 and 1,421 differentially expressed genes in response to the long and short protocols, respectively using DEseq2 analysis [false discovery rate (FDR) cutoff = 0.05, minimal fold change = 1.5]. The overall transcriptional response was partially aligned, with 43% (n=949) of genes altered in both protocols, whereas no discordant directional changes were observed. K-means clustering and gene set enrichment analyses based on gene ontology biological process terms showed that genes associated with muscle adaptation and development were upregulated regardless of exercise conditions; genes related to immune and cytokine responses were more upregulated following the long protocol, and protein folding and temperature response were highly expressed after the short protocol. We found that 11 genes were upregulated to a greater extent by the short protocol and one was by the long protocol, with GNA13, SPART, PHAF1, and PTX3 identified as potential candidates for skeletal muscle remodeling. Our results suggest that altered metabolic fluctuations dependent on the intermittent pattern of interval exercise modulate skeletal muscle gene expression, and therefore rest interval length could be an important consideration in optimizing skeletal muscle adaptation.

{"title":"Comparison of long and short rest periods during high-intensity interval exercise on transcriptomic responses in equine skeletal muscle.","authors":"Kenya Takahashi, Kazutaka Mukai, Yuji Takahashi, Yusaku Ebisuda, Hideo Hatta, Yu Kitaoka","doi":"10.1152/physiolgenomics.00066.2024","DOIUrl":"https://doi.org/10.1152/physiolgenomics.00066.2024","url":null,"abstract":"<p><p>The purpose of this study was to elucidate the skeletal muscle transcriptomic response unique to rest duration during high-intensity interval exercise. Thoroughbred horses performed three 1-min bouts of exercise at their maximal oxygen uptake (10.7-12.5 m/s), separated by 15 min (long) or 2 min (short) walking at 1.7 m/s. Gluteus medius muscle was collected before and at 4 h after the exercise and used for RNA sequencing. We identified 1,756 and 1,421 differentially expressed genes in response to the long and short protocols, respectively using DEseq2 analysis [false discovery rate (FDR) cutoff = 0.05, minimal fold change = 1.5]. The overall transcriptional response was partially aligned, with 43% (n=949) of genes altered in both protocols, whereas no discordant directional changes were observed. K-means clustering and gene set enrichment analyses based on gene ontology biological process terms showed that genes associated with muscle adaptation and development were upregulated regardless of exercise conditions; genes related to immune and cytokine responses were more upregulated following the long protocol, and protein folding and temperature response were highly expressed after the short protocol. We found that 11 genes were upregulated to a greater extent by the short protocol and one was by the long protocol, with <i>GNA13</i>, <i>SPART</i>, <i>PHAF1</i>, and <i>PTX3</i> identified as potential candidates for skeletal muscle remodeling. Our results suggest that altered metabolic fluctuations dependent on the intermittent pattern of interval exercise modulate skeletal muscle gene expression, and therefore rest interval length could be an important consideration in optimizing skeletal muscle adaptation.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142814110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial intelligence and omics in malignant gliomas. 恶性胶质瘤中的人工智能和 Omics。
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-10-22 DOI: 10.1152/physiolgenomics.00011.2024
Richa Tambi, Binte Zehra, Aswathy Vijayakumar, Dharana Satsangi, Mohammed Uddin, Bakhrom K Berdiev

Glioblastoma multiforme (GBM) is one of the most common and aggressive type of malignant glioma with an average survival time of 12-18 mo. Despite the utilization of extensive surgical resections using cutting-edge neuroimaging, and advanced chemotherapy and radiotherapy, the prognosis remains unfavorable. The heterogeneity of GBM and the presence of the blood-brain barrier further complicate the therapeutic process. It is crucial to adopt a multifaceted approach in GBM research to understand its biology and advance toward effective treatments. In particular, omics research, which primarily includes genomics, transcriptomics, proteomics, and epigenomics, helps us understand how GBM develops, finds biomarkers, and discovers new therapeutic targets. The availability of large-scale multiomics data requires the development of computational models to infer valuable biological insights for the implementation of precision medicine. Artificial intelligence (AI) refers to a host of computational algorithms that is becoming a major tool capable of integrating large omics databases. Although the application of AI tools in GBM-omics is currently in its early stages, a thorough exploration of AI utilization to uncover different aspects of GBM (subtype classification, prognosis, and survival) would have a significant impact on both researchers and clinicians. Here, we aim to review and provide database resources of different AI-based techniques that have been used to study GBM pathogenesis using multiomics data over the past decade. We summarize different types of GBM-related omics resources that can be used to develop AI models. Furthermore, we explore various AI tools that have been developed using either individual or integrated multiomics data, highlighting their applications and limitations in the context of advancing GBM research and treatment.

大规模多组学数据的可用性要求开发计算模型,以推断出有价值的生物学见解,从而实施精准医疗。人工智能(AI)指的是一系列计算算法,这些算法正在成为能够整合大规模基因组学、转录组学、蛋白质组学和代谢组学数据的主要工具。机器学习(ML)是健康科学领域最重要的人工智能算法,特别是由于深度学习最近取得的进展,这种算法已经呈现爆炸式增长。虽然人工智能/ML 工具在 GBM 组学中的应用仍处于早期阶段,但全面讨论如何利用人工智能来揭示 GBM 的各个方面(肿瘤内异质性、生物标记物发现、生存预测和治疗优化)对研究人员和临床医生都非常重要。在此,我们旨在回顾过去十年中利用多组学数据研究 GBM 发病机制的不同人工智能技术。我们首先总结了可用于开发人工智能模型的不同类型的 GBM 相关组学资源。然后,我们讨论了多组学数据的各种人工智能应用,以提高 GBM 精准医疗水平。最后,我们讨论了限制其应用的技术和伦理挑战,以及改进其在临床中实施的方法。
{"title":"Artificial intelligence and omics in malignant gliomas.","authors":"Richa Tambi, Binte Zehra, Aswathy Vijayakumar, Dharana Satsangi, Mohammed Uddin, Bakhrom K Berdiev","doi":"10.1152/physiolgenomics.00011.2024","DOIUrl":"10.1152/physiolgenomics.00011.2024","url":null,"abstract":"<p><p>Glioblastoma multiforme (GBM) is one of the most common and aggressive type of malignant glioma with an average survival time of 12-18 mo. Despite the utilization of extensive surgical resections using cutting-edge neuroimaging, and advanced chemotherapy and radiotherapy, the prognosis remains unfavorable. The heterogeneity of GBM and the presence of the blood-brain barrier further complicate the therapeutic process. It is crucial to adopt a multifaceted approach in GBM research to understand its biology and advance toward effective treatments. In particular, omics research, which primarily includes genomics, transcriptomics, proteomics, and epigenomics, helps us understand how GBM develops, finds biomarkers, and discovers new therapeutic targets. The availability of large-scale multiomics data requires the development of computational models to infer valuable biological insights for the implementation of precision medicine. Artificial intelligence (AI) refers to a host of computational algorithms that is becoming a major tool capable of integrating large omics databases. Although the application of AI tools in GBM-omics is currently in its early stages, a thorough exploration of AI utilization to uncover different aspects of GBM (subtype classification, prognosis, and survival) would have a significant impact on both researchers and clinicians. Here, we aim to review and provide database resources of different AI-based techniques that have been used to study GBM pathogenesis using multiomics data over the past decade. We summarize different types of GBM-related omics resources that can be used to develop AI models. Furthermore, we explore various AI tools that have been developed using either individual or integrated multiomics data, highlighting their applications and limitations in the context of advancing GBM research and treatment.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"876-895"},"PeriodicalIF":2.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exercise and tumor proteome: insights from a neuroblastoma model. 运动与肿瘤蛋白质组:神经母细胞瘤模型的启示
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-09-23 DOI: 10.1152/physiolgenomics.00064.2024
Abel Plaza-Florido, Beatriz G Gálvez, Juan A López, Alejandro Santos-Lozano, Sandra Zazo, Cecilia Rincón-Castanedo, Asunción Martín-Ruiz, Jorge Lumbreras, Laura C Terron-Camero, Alejandro López-Soto, Eduardo Andrés-León, África González-Murillo, Federico Rojo, Manuel Ramírez, Alejandro Lucia, Carmen Fiuza-Luces

The impact of exercise on pediatric tumor biology is essentially unknown. We explored the effects of regular exercise on tumor proteome profile (as assessed with liquid chromatography with tandem mass spectrometry) in a mouse model of one of the most aggressive childhood malignancies, high-risk neuroblastoma (HR-NB). Tumor samples of 14 male mice (aged 6-8 wk) that were randomly allocated into an exercise (5-wk combined aerobic and resistance training) or nonexercise control group (6 and 8 mice/group, respectively) were analyzed. The Search Tool for the Retrieval of Interacting Genes/Proteins database was used to generate a protein-protein interaction (PPI) network and enrichment analyses. The Systems Biology Triangle (SBT) algorithm was applied for analyses at the functional category level. Tumors of exercised mice showed a higher and lower abundance of 101 and 150 proteins, respectively, than controls [false discovery rate (FDR) < 0.05]. These proteins were enriched in metabolic pathways, amino acid metabolism, regulation of hormone levels, and peroxisome proliferator-activated receptor signaling (FDR < 0.05). The SBT algorithm indicated that 184 and 126 categories showed a lower and higher abundance, respectively, in the tumors of exercised mice (FDR < 0.01). Categories with lower abundance were involved in energy production, whereas those with higher abundance were related to transcription/translation, apoptosis, and tumor suppression. Regular exercise altered the abundance of hundreds of intratumoral proteins and molecular pathways, particularly those involved in energy metabolism, apoptosis, and tumor suppression. These findings provide preliminary evidence of the molecular mechanisms underlying the potential effects of exercise in HR-NB.NEW & NOTEWORTHY We used liquid chromatography with tandem mass spectrometry to explore the impact of a 5-wk exercise intervention on the tumor proteome profile in a mouse model of one of the most aggressive childhood malignancies, high-risk neuroblastoma. Exercise altered the abundance of hundreds of proteins and pathways, particularly those involved in energy metabolism and tumor suppression. These molecular changes could mediate, at least partly, the potential antitumorigenic effects of exercise.

背景/目的:运动对儿科肿瘤生物学的影响基本上是未知的。我们在最具侵袭性的儿童恶性肿瘤之一--高危神经母细胞瘤(HR-NB)的小鼠模型中研究了定期运动对肿瘤蛋白质组谱的影响(用液相色谱串联质谱法评估):方法:对14只雄性小鼠(6-8周龄)的肿瘤样本进行分析,这些小鼠被随机分配到运动组(5周的有氧和阻力训练组合)或非运动对照组(每组分别为6只和8只)。利用检索相互作用基因/蛋白数据库的搜索工具生成蛋白质-蛋白质相互作用(PPI)网络并进行富集分析。系统生物学三角(SBT)算法用于功能类别层面的分析:结果:与对照组相比,运动小鼠肿瘤中分别有 101 个和 150 个蛋白质的丰度较高和较低[错误发现率(FDR)]:定期运动改变了数百种肿瘤内蛋白质和分子通路的丰度,尤其是那些参与能量代谢、细胞凋亡和肿瘤抑制的蛋白质。这些发现提供了运动对 HR-NB 潜在影响的分子机制的初步证据。
{"title":"Exercise and tumor proteome: insights from a neuroblastoma model.","authors":"Abel Plaza-Florido, Beatriz G Gálvez, Juan A López, Alejandro Santos-Lozano, Sandra Zazo, Cecilia Rincón-Castanedo, Asunción Martín-Ruiz, Jorge Lumbreras, Laura C Terron-Camero, Alejandro López-Soto, Eduardo Andrés-León, África González-Murillo, Federico Rojo, Manuel Ramírez, Alejandro Lucia, Carmen Fiuza-Luces","doi":"10.1152/physiolgenomics.00064.2024","DOIUrl":"10.1152/physiolgenomics.00064.2024","url":null,"abstract":"<p><p>The impact of exercise on pediatric tumor biology is essentially unknown. We explored the effects of regular exercise on tumor proteome profile (as assessed with liquid chromatography with tandem mass spectrometry) in a mouse model of one of the most aggressive childhood malignancies, high-risk neuroblastoma (HR-NB). Tumor samples of 14 male mice (aged 6-8 wk) that were randomly allocated into an exercise (5-wk combined aerobic and resistance training) or nonexercise control group (6 and 8 mice/group, respectively) were analyzed. The Search Tool for the Retrieval of Interacting Genes/Proteins database was used to generate a protein-protein interaction (PPI) network and enrichment analyses. The Systems Biology Triangle (SBT) algorithm was applied for analyses at the functional category level. Tumors of exercised mice showed a higher and lower abundance of 101 and 150 proteins, respectively, than controls [false discovery rate (FDR) < 0.05]. These proteins were enriched in metabolic pathways, amino acid metabolism, regulation of hormone levels, and peroxisome proliferator-activated receptor signaling (FDR < 0.05). The SBT algorithm indicated that 184 and 126 categories showed a lower and higher abundance, respectively, in the tumors of exercised mice (FDR < 0.01). Categories with lower abundance were involved in energy production, whereas those with higher abundance were related to transcription/translation, apoptosis, and tumor suppression. Regular exercise altered the abundance of hundreds of intratumoral proteins and molecular pathways, particularly those involved in energy metabolism, apoptosis, and tumor suppression. These findings provide preliminary evidence of the molecular mechanisms underlying the potential effects of exercise in HR-NB.<b>NEW & NOTEWORTHY</b> We used liquid chromatography with tandem mass spectrometry to explore the impact of a 5-wk exercise intervention on the tumor proteome profile in a mouse model of one of the most aggressive childhood malignancies, high-risk neuroblastoma. Exercise altered the abundance of hundreds of proteins and pathways, particularly those involved in energy metabolism and tumor suppression. These molecular changes could mediate, at least partly, the potential antitumorigenic effects of exercise.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"833-844"},"PeriodicalIF":2.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573273/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142293218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differences in gut microbiota and metabolites between wrestlers with varying precompetition weight control effect. 不同赛前体重控制效果的摔跤运动员肠道微生物群和代谢物的差异。
IF 2.5 4区 生物学 Q3 CELL BIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-10-21 DOI: 10.1152/physiolgenomics.00026.2024
Pengyu Fu, Cuiping Wang, Shuai Zheng, Lijing Gong

This study intended to analyze the effects of body weight control by the diet, training adaptation, and gut microbiota metabolites of wrestlers in the week leading up to competition. According to the weight difference of wrestlers from the target weight 1 wk before the competition, those whose weight control effectiveness is less than 2 kg were classified as the CW group, whereas more than 2 kg were classified as the CnW group. The body weight, body composition, and diet of wrestlers were recorded; urine samples were taken for standard urine testing, and stool samples were collected for the analysis of gut microbiota and metabolites. The data showed that the relative values of carbohydrate and fat energy in the CnW group were significantly higher than those of the CW group, but the relative values of protein energy were significantly lower. The white blood cells, occult blood, and protein appeared in urine in the CnW group. The microbiota with higher abundance values in the CnW group were positively correlated with the relative value of carbohydrate energy, while the abundance value of Streptococcus was negatively correlated, and the functional prediction of differential bacteria was related to riboflavin and selencompound metabolism. The differential metabolites of CW/CnW group were functionally enriched in the processes of lipid and amino acid metabolism. Overall, the extent of weight control in wrestlers was correlated with sensible dietary patterns, adaptability to training load, and distinct gut microbiota and metabolites.NEW & NOTEWORTHY The purpose of this study is to observe the differences in precompetition diet structure, adaptability to training, gut microbiota, and metabolites of wrestlers with different weight control effects and analyze the correlation between them, aiming to provide scientific guidance and advice on weight control for wrestlers.

本研究旨在分析摔跤运动员在比赛前一周通过饮食、训练适应性、肠道微生物群代谢物控制体重的效果。根据摔跤运动员比赛前一周与目标体重的体重差,将体重控制效果小于 2 千克的摔跤运动员归为 CW 组,大于 2 千克的摔跤运动员归为 CnW 组。研究人员记录了摔跤运动员的体重、身体成分和饮食情况;采集尿样进行标准尿检,并采集粪便样本进行肠道微生物群和代谢物分析。数据显示,CnW 组的碳水化合物和脂肪能量的相对值明显高于 CW 组,但蛋白质能量的相对值明显低于 CW 组。CnW组尿液中出现白细胞、隐血和蛋白质。CnW组中丰度值较高的微生物群与碳水化合物能量的相对值呈正相关,而链球菌的丰度值呈负相关;差异细菌的功能预测与核黄素和硒化合物的代谢有关。CW/CnW组的差异代谢产物在脂质和氨基酸代谢过程中功能富集。总之,摔跤运动员的体重控制程度与合理的饮食模式、对训练负荷的适应性以及不同的肠道微生物群和代谢物有关。
{"title":"Differences in gut microbiota and metabolites between wrestlers with varying precompetition weight control effect.","authors":"Pengyu Fu, Cuiping Wang, Shuai Zheng, Lijing Gong","doi":"10.1152/physiolgenomics.00026.2024","DOIUrl":"10.1152/physiolgenomics.00026.2024","url":null,"abstract":"<p><p>This study intended to analyze the effects of body weight control by the diet, training adaptation, and gut microbiota metabolites of wrestlers in the week leading up to competition. According to the weight difference of wrestlers from the target weight 1 wk before the competition, those whose weight control effectiveness is less than 2 kg were classified as the CW group, whereas more than 2 kg were classified as the CnW group. The body weight, body composition, and diet of wrestlers were recorded; urine samples were taken for standard urine testing, and stool samples were collected for the analysis of gut microbiota and metabolites. The data showed that the relative values of carbohydrate and fat energy in the CnW group were significantly higher than those of the CW group, but the relative values of protein energy were significantly lower. The white blood cells, occult blood, and protein appeared in urine in the CnW group. The microbiota with higher abundance values in the CnW group were positively correlated with the relative value of carbohydrate energy, while the abundance value of <i>Streptococcus</i> was negatively correlated, and the functional prediction of differential bacteria was related to riboflavin and selencompound metabolism. The differential metabolites of CW/CnW group were functionally enriched in the processes of lipid and amino acid metabolism. Overall, the extent of weight control in wrestlers was correlated with sensible dietary patterns, adaptability to training load, and distinct gut microbiota and metabolites.<b>NEW & NOTEWORTHY</b> The purpose of this study is to observe the differences in precompetition diet structure, adaptability to training, gut microbiota, and metabolites of wrestlers with different weight control effects and analyze the correlation between them, aiming to provide scientific guidance and advice on weight control for wrestlers.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"845-854"},"PeriodicalIF":2.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physiological genomics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1