Maternal-fetal interfaces transcriptome changes associated with placental insufficiency and a novel gene therapy intervention.

IF 2.5 4区 生物学 Q3 CELL BIOLOGY Physiological genomics Pub Date : 2024-10-07 DOI:10.1152/physiolgenomics.00131.2024
Helen N Jones, Baylea N Davenport, Rebecca L Wilson
{"title":"Maternal-fetal interfaces transcriptome changes associated with placental insufficiency and a novel gene therapy intervention.","authors":"Helen N Jones, Baylea N Davenport, Rebecca L Wilson","doi":"10.1152/physiolgenomics.00131.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The etiology of fetal growth restriction (FGR) is multifactorial, although many cases involve placental insufficiency. Placental insufficiency is associated with inadequate trophoblast invasion resulting in high resistance to blood flow, decreased availability of nutrients, and increased hypoxia. We have developed a non-viral, polymer-based nanoparticle that facilitates delivery and transient gene expression of <i>human insulin-like 1 growth factor</i> (<i>hIGF1</i>) in trophoblast for the treatment of placenta insufficiency and FGR. Using the established guinea pig maternal nutrient restriction (MNR) model of placental insufficiency, the aim of the study was to identify novel pathways in the sub-placenta/decidua that provide insight into the underlying mechanism driving placental insufficiency, and may be corrected with <i>hIGF1</i> nanoparticle treatment. Pregnant guinea pigs underwent ultrasound-guided sham or <i>hIGF1</i> nanoparticle treatment at mid-pregnancy, and sub-placenta/decidua tissue was collected 5 days later. Transcriptome analysis was performed using RNA Sequencing on the Illumina platform. The MNR sub-placenta/decidua demonstrated fewer maternal spiral arteries lined by trophoblast, shallower trophoblast invasion and downregulation of genelists involved in the regulation of cell migration. <i>hIGF1</i> nanoparticle treatment resulted in marked changes to transporter activity in the MNR + <i>hIGF1</i> sub-placenta/decidua when compared to sham MNR. Under normal growth conditions however, <i>hIGF1</i> nanoparticle treatment decreased genelists enriched for kinase signaling pathways and increased genelists enriched for proteolysis indicative of homeostasis. Overall, this study identified changes to the sub-placenta/decidua transcriptome that likely result in inadequate trophoblast invasion and increases our understanding of pathways that <i>hIGF1</i> nanoparticle treatment acts on in order to restore or maintain appropriate placenta function.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00131.2024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The etiology of fetal growth restriction (FGR) is multifactorial, although many cases involve placental insufficiency. Placental insufficiency is associated with inadequate trophoblast invasion resulting in high resistance to blood flow, decreased availability of nutrients, and increased hypoxia. We have developed a non-viral, polymer-based nanoparticle that facilitates delivery and transient gene expression of human insulin-like 1 growth factor (hIGF1) in trophoblast for the treatment of placenta insufficiency and FGR. Using the established guinea pig maternal nutrient restriction (MNR) model of placental insufficiency, the aim of the study was to identify novel pathways in the sub-placenta/decidua that provide insight into the underlying mechanism driving placental insufficiency, and may be corrected with hIGF1 nanoparticle treatment. Pregnant guinea pigs underwent ultrasound-guided sham or hIGF1 nanoparticle treatment at mid-pregnancy, and sub-placenta/decidua tissue was collected 5 days later. Transcriptome analysis was performed using RNA Sequencing on the Illumina platform. The MNR sub-placenta/decidua demonstrated fewer maternal spiral arteries lined by trophoblast, shallower trophoblast invasion and downregulation of genelists involved in the regulation of cell migration. hIGF1 nanoparticle treatment resulted in marked changes to transporter activity in the MNR + hIGF1 sub-placenta/decidua when compared to sham MNR. Under normal growth conditions however, hIGF1 nanoparticle treatment decreased genelists enriched for kinase signaling pathways and increased genelists enriched for proteolysis indicative of homeostasis. Overall, this study identified changes to the sub-placenta/decidua transcriptome that likely result in inadequate trophoblast invasion and increases our understanding of pathways that hIGF1 nanoparticle treatment acts on in order to restore or maintain appropriate placenta function.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与胎盘功能不全有关的母胎界面转录组变化和一种新型基因治疗干预方法。
胎儿生长受限(FGR)的病因是多因素的,但许多病例涉及胎盘功能不全。胎盘功能不全与滋养层侵入不足有关,滋养层侵入不足会导致血流阻力增大、营养供应减少和缺氧加剧。我们开发了一种基于聚合物的非病毒纳米粒子,可促进人胰岛素样 1 生长因子(hIGF1)在滋养细胞中的传递和瞬时基因表达,用于治疗胎盘功能不全和妊娠合并绒毛膜促性腺激素(FGR)。该研究利用已建立的豚鼠母体营养限制(MNR)胎盘功能不全模型,旨在确定胎盘下/蜕膜中的新通路,以深入了解驱动胎盘功能不全的潜在机制,并通过 hIGF1 纳米粒子治疗加以纠正。妊娠豚鼠在妊娠中期接受超声引导下的假治疗或 hIGF1 纳米粒子治疗,5 天后收集胎盘下/蜕膜组织。利用 Illumina 平台上的 RNA 测序技术进行转录组分析。与假MNR相比,hIGF1纳米颗粒处理导致MNR + hIGF1亚前置胎盘/蜕膜的转运体活性发生明显变化。然而,在正常生长条件下,hIGF1 纳米粒子处理减少了富含激酶信号通路的基因列表,而增加了富含蛋白水解的基因列表,这表明了体内平衡。总之,这项研究确定了可能导致滋养细胞侵袭不足的胎盘下/蜕膜转录组的变化,并增加了我们对 hIGF1 纳米粒子治疗作用于恢复或维持适当胎盘功能的途径的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiological genomics
Physiological genomics 生物-生理学
CiteScore
6.10
自引率
0.00%
发文量
46
审稿时长
4-8 weeks
期刊介绍: The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.
期刊最新文献
Exercise and tumor proteome: insights from a neuroblastoma model. A long-term high-fat diet induces differential gene expression changes in spatially distinct adipose tissue of male mice. Three decades of rat genomics: approaching the finish(ed) line. Differences in gut microbiota and metabolites between wrestlers with varying precompetition weight control effect. Ameliorating Immune-dependent Inflammation and Apoptosis by Targeting TLR4/MYD88/NF-ᵰ5B Pathway by Celastrol Mitigates the Diabetic Reproductive Dysfunction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1