Prodrugs of paclitaxel improve in situ photo-vaccination.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Photochemistry and Photobiology Pub Date : 2024-10-09 DOI:10.1111/php.14025
Prabhanjan Giram, Ganesh Bist, Sukyung Woo, Elizabeth Wohlfert, Roberto Pili, Youngjae You
{"title":"Prodrugs of paclitaxel improve in situ photo-vaccination.","authors":"Prabhanjan Giram, Ganesh Bist, Sukyung Woo, Elizabeth Wohlfert, Roberto Pili, Youngjae You","doi":"10.1111/php.14025","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic therapy (PDT) effectively kills cancer cells and initiates immune responses that promote anticancer effects locally and systemically. Primarily developed for local and regional cancers, the potential of PDT for systemic antitumor effects [in situ photo-vaccination (ISPV)] remains underexplored. This study investigates: (1) the comparative effectiveness of paclitaxel (PTX) prodrug [Pc-(L-PTX)<sub>2</sub>] for PDT and site-specific PTX effects versus its pseudo-prodrug [Pc-(NCL-PTX)<sub>2</sub>] for PDT combined with checkpoint inhibitors; (2) mechanisms driving systemic antitumor effects; and (3) the prophylactic impact on preventing cancer recurrence. A bilateral tumor model was established in BALB/c mice through subcutaneous injection of CT26 cells. Mice received the PTX prodrug (0.5 μmole kg<sup>-1</sup>, i.v.), and tumors were treated with a 690-nm laser (75 mW cm<sup>-2</sup> for 30 min, drug-light interval 0.5 h, light does 135 J cm<sup>-1</sup>), followed by anti-CTLA-4 (100 μg dose<sup>-1</sup>, i.p.) on days 1, 4, and 7. Notable enhancement in both local and systemic antitumor effectiveness was observed with [Pc-(L-PTX)<sub>2</sub>] compared to [Pc-(NCL-PTX)<sub>2</sub>] with checkpoint inhibitor. Immune cell depletion and immunohistochemistry confirmed neutrophils and CD8+ T cells are effectors for systemic antitumor effects. Treatment-induced immune memory resisted newly rechallenged CT26, showcasing prophylactic benefits. ISPV with a PTX prodrug and anti-CTLA-4 is a promising approach for treating metastatic cancers and preventing recurrence.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemistry and Photobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/php.14025","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Photodynamic therapy (PDT) effectively kills cancer cells and initiates immune responses that promote anticancer effects locally and systemically. Primarily developed for local and regional cancers, the potential of PDT for systemic antitumor effects [in situ photo-vaccination (ISPV)] remains underexplored. This study investigates: (1) the comparative effectiveness of paclitaxel (PTX) prodrug [Pc-(L-PTX)2] for PDT and site-specific PTX effects versus its pseudo-prodrug [Pc-(NCL-PTX)2] for PDT combined with checkpoint inhibitors; (2) mechanisms driving systemic antitumor effects; and (3) the prophylactic impact on preventing cancer recurrence. A bilateral tumor model was established in BALB/c mice through subcutaneous injection of CT26 cells. Mice received the PTX prodrug (0.5 μmole kg-1, i.v.), and tumors were treated with a 690-nm laser (75 mW cm-2 for 30 min, drug-light interval 0.5 h, light does 135 J cm-1), followed by anti-CTLA-4 (100 μg dose-1, i.p.) on days 1, 4, and 7. Notable enhancement in both local and systemic antitumor effectiveness was observed with [Pc-(L-PTX)2] compared to [Pc-(NCL-PTX)2] with checkpoint inhibitor. Immune cell depletion and immunohistochemistry confirmed neutrophils and CD8+ T cells are effectors for systemic antitumor effects. Treatment-induced immune memory resisted newly rechallenged CT26, showcasing prophylactic benefits. ISPV with a PTX prodrug and anti-CTLA-4 is a promising approach for treating metastatic cancers and preventing recurrence.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
紫杉醇原药可改善原位光接种。
光动力疗法(PDT)能有效杀死癌细胞并启动免疫反应,从而促进局部和全身的抗癌效果。光动力疗法主要用于治疗局部和区域性癌症,但其用于全身抗肿瘤作用[原位光免疫疗法(ISPV)]的潜力仍未得到充分开发。本研究探讨了:(1) 紫杉醇(PTX)原药[Pc-(L-PTX)2]用于PDT和特定部位PTX效应与其伪药[Pc-(NCL-PTX)2]用于PDT联合检查点抑制剂的比较效果;(2) 驱动全身抗肿瘤效应的机制;(3) 对预防癌症复发的影响。通过皮下注射 CT26 细胞,在 BALB/c 小鼠中建立了双侧肿瘤模型。小鼠接受 PTX 原药(0.5 μmole kg-1,静脉注射),肿瘤接受 690 纳米激光治疗(75 mW cm-2 30 分钟,药光间隔 0.5 小时,光强度 135 J cm-1),然后在第 1、4 和 7 天接受抗 CTLA-4 治疗(100 μg dose-1,静脉注射)。与使用检查点抑制剂的[Pc-(NCL-PTX)2]相比,[Pc-(L-PTX)2]显著提高了局部和全身抗肿瘤效果。免疫细胞耗竭和免疫组化证实,中性粒细胞和CD8+ T细胞是全身抗肿瘤效应的效应因子。治疗诱导的免疫记忆可抵抗新近再次感染的CT26,显示出预防性益处。使用PTX原药和抗CTLA-4的ISPV是一种治疗转移性癌症和预防复发的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Photochemistry and Photobiology
Photochemistry and Photobiology 生物-生化与分子生物学
CiteScore
6.70
自引率
12.10%
发文量
171
审稿时长
2.7 months
期刊介绍: Photochemistry and Photobiology publishes original research articles and reviews on current topics in photoscience. Topics span from the primary interaction of light with molecules, cells, and tissue to the subsequent biological responses, representing disciplinary and interdisciplinary research in the fields of chemistry, physics, biology, and medicine. Photochemistry and Photobiology is the official journal of the American Society for Photobiology.
期刊最新文献
Performance of chatbots in queries concerning fundamental concepts in photochemistry. Enhancement of the angiogenic differentiation in the periodontal ligament stem cells using fibroblast growth factor 2 and photobiomodulation: An in vitro investigation. Extending the acute skin response spectrum to include the far-UVC. Inhibition sensitivity of in vitro firefly bioluminescence quantum yields to Zn2+ and Cd2+ concentrations in aqueous solutions. Ultraviolet radiation inhibits mitochondrial bioenergetics activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1