{"title":"The (un)known issue with using rose bengal as a standard of singlet oxygen photoproduction.","authors":"Krystian Mokrzyński, Grzegorz Szewczyk","doi":"10.1111/php.14030","DOIUrl":null,"url":null,"abstract":"<p><p>Rose bengal (RB) is a widely used photosensitizer for determining quantum yields of singlet oxygen generation. While it is known to aggregate in polar environments at concentrations above 2 μM, the relationship between RB concentration and singlet oxygen photogeneration remains unclear. This study investigates the shift from monomeric to dimeric RB with increasing concentration and its impact on singlet oxygen generation in D<sub>2</sub>O-based solutions and DMPC liposomes. Absorbance maxima for RB were observed at 514 nm (dimer) and 549 nm (monomer), with ionic environments influencing aggregation rates. Singlet oxygen phosphorescence showed non-linear dependency above 2 μM, indicating the effects of aggregation. Results suggest that RB concentrations should be kept at 1 μM or lower in photochemical studies to avoid aggregation-related discrepancies in singlet oxygen yield determination. These findings highlight the importance of considering RB aggregation in photochemical research and medical applications.</p>","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemistry and Photobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/php.14030","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rose bengal (RB) is a widely used photosensitizer for determining quantum yields of singlet oxygen generation. While it is known to aggregate in polar environments at concentrations above 2 μM, the relationship between RB concentration and singlet oxygen photogeneration remains unclear. This study investigates the shift from monomeric to dimeric RB with increasing concentration and its impact on singlet oxygen generation in D2O-based solutions and DMPC liposomes. Absorbance maxima for RB were observed at 514 nm (dimer) and 549 nm (monomer), with ionic environments influencing aggregation rates. Singlet oxygen phosphorescence showed non-linear dependency above 2 μM, indicating the effects of aggregation. Results suggest that RB concentrations should be kept at 1 μM or lower in photochemical studies to avoid aggregation-related discrepancies in singlet oxygen yield determination. These findings highlight the importance of considering RB aggregation in photochemical research and medical applications.
期刊介绍:
Photochemistry and Photobiology publishes original research articles and reviews on current topics in photoscience. Topics span from the primary interaction of light with molecules, cells, and tissue to the subsequent biological responses, representing disciplinary and interdisciplinary research in the fields of chemistry, physics, biology, and medicine. Photochemistry and Photobiology is the official journal of the American Society for Photobiology.