Genome-wide identification of sweet potato U-Box E3 ubiquitin ligases and roles of IbPUB52 in negative regulation of drought stress.

IF 5.4 2区 生物学 Q1 PLANT SCIENCES Physiologia plantarum Pub Date : 2024-09-01 DOI:10.1111/ppl.14568
Shanwu Lyu, Yaping Mao, Yi Zhang, Tianli Yu, Xuangang Yang, Hongbo Zhu, Shulin Deng
{"title":"Genome-wide identification of sweet potato U-Box E3 ubiquitin ligases and roles of IbPUB52 in negative regulation of drought stress.","authors":"Shanwu Lyu, Yaping Mao, Yi Zhang, Tianli Yu, Xuangang Yang, Hongbo Zhu, Shulin Deng","doi":"10.1111/ppl.14568","DOIUrl":null,"url":null,"abstract":"<p><p>The plant U-box (PUB) proteins, a family of ubiquitin ligases (E3) enzymes, are pivotal in orchestrating many biological processes and facilitating plant responses to environmental stressors. Despite their critical roles, exploring the PUB gene family's characteristics and functional diversity in sweet potato (Ipomoea batatas (L.) Lam.) has been notably limited. There were 81 IbPUB genes identified within the sweet potato genome, and they were categorized into eight distinct groups based on domain architecture, revealing a non-uniform distribution across the 15 chromosomes of I. batatas. The investigation of cis-acting elements has shed light on the potential of PUBs to participate in a wide array of biological processes, particularly emphasizing their role in mediating responses to abiotic stresses. Transcriptome profiles revealed that IbPUB genes displayed a wide range of expression levels among different tissues and were regulated by salt or drought stress. IbPUB52 has emerged as a gene of significant interest due to its induction by salt and drought stresses. Localization studies have confirmed the presence of IbPUB52 in both the nucleus and the cytoplasm, and its ubiquitination activity has been validated through rigorous in vitro and in vivo assays. Intriguingly, the heterogeneous expression of IbPUB52 in Arabidopsis resulted in decreased drought tolerance. The virus-induced gene silencing (VIGS) of IbPUB52 in sweet potatoes led to enhanced resistance to drought. This evidence suggests that IbPUB52 negatively regulates the drought tolerance of plants. The findings of this study are instrumental in advancing our comprehension of the functional dynamics of PUB E3 ubiquitin ligases in sweet potatoes.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 5","pages":"e14568"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.14568","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The plant U-box (PUB) proteins, a family of ubiquitin ligases (E3) enzymes, are pivotal in orchestrating many biological processes and facilitating plant responses to environmental stressors. Despite their critical roles, exploring the PUB gene family's characteristics and functional diversity in sweet potato (Ipomoea batatas (L.) Lam.) has been notably limited. There were 81 IbPUB genes identified within the sweet potato genome, and they were categorized into eight distinct groups based on domain architecture, revealing a non-uniform distribution across the 15 chromosomes of I. batatas. The investigation of cis-acting elements has shed light on the potential of PUBs to participate in a wide array of biological processes, particularly emphasizing their role in mediating responses to abiotic stresses. Transcriptome profiles revealed that IbPUB genes displayed a wide range of expression levels among different tissues and were regulated by salt or drought stress. IbPUB52 has emerged as a gene of significant interest due to its induction by salt and drought stresses. Localization studies have confirmed the presence of IbPUB52 in both the nucleus and the cytoplasm, and its ubiquitination activity has been validated through rigorous in vitro and in vivo assays. Intriguingly, the heterogeneous expression of IbPUB52 in Arabidopsis resulted in decreased drought tolerance. The virus-induced gene silencing (VIGS) of IbPUB52 in sweet potatoes led to enhanced resistance to drought. This evidence suggests that IbPUB52 negatively regulates the drought tolerance of plants. The findings of this study are instrumental in advancing our comprehension of the functional dynamics of PUB E3 ubiquitin ligases in sweet potatoes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
甘薯 U-Box E3 泛素连接酶的全基因组鉴定以及 IbPUB52 在干旱胁迫负调控中的作用。
植物 U-box 蛋白(PUB)是泛素连接酶(E3)的一个家族,在协调许多生物过程和促进植物对环境胁迫的反应方面起着关键作用。尽管其作用至关重要,但对甘薯(Ipomoea batatas (L.) Lam.)中 PUB 基因家族的特征和功能多样性的探索却非常有限。在甘薯基因组中发现了 81 个 IbPUB 基因,根据结构域将其分为 8 个不同的组,发现它们在甘薯 15 条染色体上的分布并不均匀。对顺式作用元件的研究揭示了 PUBs 参与一系列生物过程的潜力,尤其强调了它们在介导对非生物胁迫的响应中的作用。转录组图谱显示,IbPUB基因在不同组织中的表达水平差异很大,并受盐胁迫或干旱胁迫的调控。由于盐胁迫和干旱胁迫的诱导作用,IbPUB52 成为一个备受关注的基因。定位研究证实了 IbPUB52 在细胞核和细胞质中的存在,其泛素化活性也通过严格的体内外试验得到了验证。耐人寻味的是,IbPUB52在拟南芥中的异质性表达导致其耐旱性降低。在甘薯中,病毒诱导的 IbPUB52 基因沉默(VIGS)导致抗旱性增强。这些证据表明,IbPUB52 负向调控植物的耐旱性。本研究的发现有助于我们理解甘薯中 PUB E3 泛素连接酶的功能动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
期刊最新文献
Regulatory effect of pipecolic acid (Pip) on the antioxidant system activity of Mesembryanthemum crystallinum plants exposed to bacterial treatment. Tree species and drought: Two mysterious long-standing counterparts. Meta-analysis of SnRK2 gene overexpression in response to drought and salt stress. R2R3-MYB repressor, BrMYB32, regulates anthocyanin biosynthesis in Chinese cabbage. The function of an apple ATP-dependent Phosphofructokinase gene MdPFK5 in regulating salt stress.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1