Hydrogen peroxide participates in leaf senescence by inhibiting CHLI1 activity.

IF 5.3 2区 生物学 Q1 PLANT SCIENCES Plant Cell Reports Pub Date : 2024-10-09 DOI:10.1007/s00299-024-03350-4
Shi-Jia Wang, Shuang Zhai, Xin-Tong Xu, Ying-Tang Lu, Ting-Ting Yuan
{"title":"Hydrogen peroxide participates in leaf senescence by inhibiting CHLI1 activity.","authors":"Shi-Jia Wang, Shuang Zhai, Xin-Tong Xu, Ying-Tang Lu, Ting-Ting Yuan","doi":"10.1007/s00299-024-03350-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Hydrogen peroxide promoted leaf senescence by sulfenylating the magnesium chelating protease I subunit (CHLI1) in the chlorophyll synthesis pathway, and inhibited its activity to reduce chlorophyll synthesis. Leaf senescence is the final and crucial stage of plant growth and development, during which chlorophyll experiences varying degrees of destruction. It is well-known that the higher ROS accumulation is a key factor for leaf senescence, but whether and how ROS regulates chlorophyll synthesis in the process are unknown. Here, we report that H<sub>2</sub>O<sub>2</sub> inhibits chlorophyll synthesis during leaf senescence via the I subunit of magnesium-chelatase (CHLI1). During leaf senescence, the decrease of chlorophyll content is accompanied by the increase of H<sub>2</sub>O<sub>2</sub> accumulation, as well as the inhibition of catalase (CAT) genes expression. The mutant cat2-1, with increased H<sub>2</sub>O<sub>2</sub> shows an accelerated senescence phenotype and decreased CHLI1 activity compared with the wild type. H<sub>2</sub>O<sub>2</sub> inhibits CHLI1 activity by sulfenylating CHLI1 during leaf senescence. Consistent with this, the chli1 knockout mutant displays the same premature leaf senescence symptom as cat2-1, while overexpression of CHLI1 in cat2-1 can partially restore its early senescence phenotype. Taken together, these results illustrate that CAT2-mediated H<sub>2</sub>O<sub>2</sub> accumulation during leaf senescence represses chlorophyll synthesis through sulfenylating CHLI1, and thus inhibits its activity, providing a new insight into the pivotal role of chlorophyll synthesis as a participant in orchestrating the leaf senescence.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-024-03350-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Key message: Hydrogen peroxide promoted leaf senescence by sulfenylating the magnesium chelating protease I subunit (CHLI1) in the chlorophyll synthesis pathway, and inhibited its activity to reduce chlorophyll synthesis. Leaf senescence is the final and crucial stage of plant growth and development, during which chlorophyll experiences varying degrees of destruction. It is well-known that the higher ROS accumulation is a key factor for leaf senescence, but whether and how ROS regulates chlorophyll synthesis in the process are unknown. Here, we report that H2O2 inhibits chlorophyll synthesis during leaf senescence via the I subunit of magnesium-chelatase (CHLI1). During leaf senescence, the decrease of chlorophyll content is accompanied by the increase of H2O2 accumulation, as well as the inhibition of catalase (CAT) genes expression. The mutant cat2-1, with increased H2O2 shows an accelerated senescence phenotype and decreased CHLI1 activity compared with the wild type. H2O2 inhibits CHLI1 activity by sulfenylating CHLI1 during leaf senescence. Consistent with this, the chli1 knockout mutant displays the same premature leaf senescence symptom as cat2-1, while overexpression of CHLI1 in cat2-1 can partially restore its early senescence phenotype. Taken together, these results illustrate that CAT2-mediated H2O2 accumulation during leaf senescence represses chlorophyll synthesis through sulfenylating CHLI1, and thus inhibits its activity, providing a new insight into the pivotal role of chlorophyll synthesis as a participant in orchestrating the leaf senescence.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
过氧化氢通过抑制 CHLI1 的活性参与叶片衰老。
关键信息:过氧化氢通过亚磺酰化叶绿素合成途径中的镁螯合蛋白酶 I 亚基(CHLI1),抑制其活性以减少叶绿素的合成,从而促进叶片衰老。叶片衰老是植物生长发育的最后一个关键阶段,在这一阶段叶绿素会受到不同程度的破坏。众所周知,较高的 ROS 积累是叶片衰老的一个关键因素,但 ROS 是否以及如何在这一过程中调节叶绿素的合成尚不清楚。在这里,我们报告了 H2O2 通过镁螯合酶 I 亚基(CHLI1)抑制叶片衰老过程中叶绿素的合成。在叶片衰老过程中,叶绿素含量的减少伴随着 H2O2 积累的增加以及过氧化氢酶(CAT)基因表达的抑制。与野生型相比,H2O2 增加的突变体 cat2-1 表现出加速衰老表型和 CHLI1 活性降低。在叶片衰老过程中,H2O2 通过亚磺酰化 CHLI1 来抑制 CHLI1 的活性。与此相符的是,chli1 基因敲除突变体表现出与 cat2-1 相同的叶片过早衰老症状,而在 cat2-1 中过表达 CHLI1 可部分恢复其早期衰老表型。综上所述,这些结果表明,叶片衰老过程中 CAT2 介导的 H2O2 积累通过亚磺酰化 CHLI1 来抑制叶绿素的合成,从而抑制其活性,为叶绿素合成在协调叶片衰老过程中的关键作用提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Cell Reports
Plant Cell Reports 生物-植物科学
CiteScore
10.80
自引率
1.60%
发文量
135
审稿时长
3.2 months
期刊介绍: Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as: - genomics and genetics - metabolism - cell biology - abiotic and biotic stress - phytopathology - gene transfer and expression - molecular pharming - systems biology - nanobiotechnology - genome editing - phenomics and synthetic biology The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.
期刊最新文献
Advancements in plant transformation: from traditional methods to cutting-edge techniques and emerging model species. Discovery of ElABCG39: a key player in ingenol transmembrane efflux identified through genome-wide analysis of ABC transporters in Euphorbia lathyris L. Enhancing drought stress tolerance in horticultural plants through melatonin-mediated phytohormonal crosstalk. CRISPR/Cas system-mediated base editing in crops: recent developments and future prospects. Juvenile-related tolerance to papaya sticky disease (PSD): proteomic, ultrastructural, and physiological events.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1