{"title":"Discovery of novel chemotype inhibitors targeting Anaplastic Lymphoma Kinase receptor through ligand-based pharmacophore modelling.","authors":"I El-Jundi, S Daoud, M O Taha","doi":"10.1080/1062936X.2024.2406398","DOIUrl":null,"url":null,"abstract":"<p><p>Anaplastic Lymphoma Kinase (ALK) is a receptor tyrosine kinase within the insulin receptor superfamily. Alterations in ALK, such as rearrangements, mutations, or amplifications, have been detected in various tumours, including lymphoma, neuroblastoma, and non-small cell lung cancer. In this study, we outline a computational workflow designed to uncover new inhibitors of ALK. This process starts with a ligand-based exploration of the pharmacophoric space using 13 diverse sets of ALK inhibitors. Subsequently, quantitative structure-activity relationship (QSAR) modelling is employed in combination with a genetic function algorithm to identify the optimal combination of pharmacophores and molecular descriptors capable of elucidating variations in anti-ALK bioactivities within a compiled list of inhibitors. The successful QSAR model revealed three pharmacophores, two of which share three similar features, prompting their merger into a single pharmacophore model. The merged pharmacophore was used as a 3D search query to mine the National Cancer Institute (NCI) database for novel anti-ALK leads. Subsequent in vitro bioassay of the top 40 hits identified two compounds with low micromolar IC<sub>50</sub> values. Remarkably, one of the identified leads possesses a novel chemotype compared to known ALK inhibitors.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":" ","pages":"795-815"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2024.2406398","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Anaplastic Lymphoma Kinase (ALK) is a receptor tyrosine kinase within the insulin receptor superfamily. Alterations in ALK, such as rearrangements, mutations, or amplifications, have been detected in various tumours, including lymphoma, neuroblastoma, and non-small cell lung cancer. In this study, we outline a computational workflow designed to uncover new inhibitors of ALK. This process starts with a ligand-based exploration of the pharmacophoric space using 13 diverse sets of ALK inhibitors. Subsequently, quantitative structure-activity relationship (QSAR) modelling is employed in combination with a genetic function algorithm to identify the optimal combination of pharmacophores and molecular descriptors capable of elucidating variations in anti-ALK bioactivities within a compiled list of inhibitors. The successful QSAR model revealed three pharmacophores, two of which share three similar features, prompting their merger into a single pharmacophore model. The merged pharmacophore was used as a 3D search query to mine the National Cancer Institute (NCI) database for novel anti-ALK leads. Subsequent in vitro bioassay of the top 40 hits identified two compounds with low micromolar IC50 values. Remarkably, one of the identified leads possesses a novel chemotype compared to known ALK inhibitors.
期刊介绍:
SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.