{"title":"Comparison of random forest methods for conditional average treatment effect estimation with a continuous treatment.","authors":"Sami Tabib, Denis Larocque","doi":"10.1177/09622802241275401","DOIUrl":null,"url":null,"abstract":"<p><p>We are addressing the problem of estimating conditional average treatment effects with a continuous treatment and a continuous response, using random forests. We explore two general approaches: building trees with a split rule that seeks to increase the heterogeneity of the treatment effect estimation and building trees to predict <math><mi>Y</mi></math> as a proxy target variable. We conduct a simulation study to investigate several aspects including the presence or absence of confounding and colliding effects and the merits of locally centering the treatment and/or the response. Our study incorporates both existing and new implementations of random forests. The results indicate that locally centering both the response and treatment variables is generally the best strategy, and both general approaches are viable. Additionally, we provide an illustration using data from the 1987 National Medical Expenditure Survey.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"1952-1966"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577706/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241275401","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
We are addressing the problem of estimating conditional average treatment effects with a continuous treatment and a continuous response, using random forests. We explore two general approaches: building trees with a split rule that seeks to increase the heterogeneity of the treatment effect estimation and building trees to predict as a proxy target variable. We conduct a simulation study to investigate several aspects including the presence or absence of confounding and colliding effects and the merits of locally centering the treatment and/or the response. Our study incorporates both existing and new implementations of random forests. The results indicate that locally centering both the response and treatment variables is generally the best strategy, and both general approaches are viable. Additionally, we provide an illustration using data from the 1987 National Medical Expenditure Survey.
期刊介绍:
Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)