Advancing Cartilage Tissue Engineering: A Review of 3D Bioprinting Approaches and Bioink Properties.

IF 5.1 2区 医学 Q2 CELL & TISSUE ENGINEERING Tissue Engineering. Part B, Reviews Pub Date : 2024-10-09 DOI:10.1089/ten.teb.2024.0168
Gabriele Boretti, Arsalan Amirfallah, Kyle J Edmunds, Helena Hamzehpour, Ólafur E Sigurjónsson
{"title":"Advancing Cartilage Tissue Engineering: A Review of 3D Bioprinting Approaches and Bioink Properties.","authors":"Gabriele Boretti, Arsalan Amirfallah, Kyle J Edmunds, Helena Hamzehpour, Ólafur E Sigurjónsson","doi":"10.1089/ten.teb.2024.0168","DOIUrl":null,"url":null,"abstract":"<p><p>Articular cartilage is crucial in human physiology, and its degeneration poses a significant public health challenge. While recent advancements in 3D bioprinting and tissue engineering show promise for cartilage regeneration, there remains a gap between research findings and clinical application. This review critically examines the mechanical and biological properties of hyaline cartilage, along with current 3D manufacturing methods and analysis techniques. Moreover, we provide a quantitative synthesis of bioink properties used in cartilage tissue engineering. After screening 181 initial works, 33 studies using extrusion bioprinting were analyzed and synthesized, presenting results that indicate the main materials, cells, and methods utilized for mechanical and biological evaluation. Altogether, this review motivates the standardization of mechanical analyses and biomaterial assessments of 3D bioprinted constructs to clarify their chondrogenic potential.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering. Part B, Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.teb.2024.0168","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Articular cartilage is crucial in human physiology, and its degeneration poses a significant public health challenge. While recent advancements in 3D bioprinting and tissue engineering show promise for cartilage regeneration, there remains a gap between research findings and clinical application. This review critically examines the mechanical and biological properties of hyaline cartilage, along with current 3D manufacturing methods and analysis techniques. Moreover, we provide a quantitative synthesis of bioink properties used in cartilage tissue engineering. After screening 181 initial works, 33 studies using extrusion bioprinting were analyzed and synthesized, presenting results that indicate the main materials, cells, and methods utilized for mechanical and biological evaluation. Altogether, this review motivates the standardization of mechanical analyses and biomaterial assessments of 3D bioprinted constructs to clarify their chondrogenic potential.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
推进软骨组织工程:三维生物打印方法和生物墨水特性综述。
关节软骨对人体生理至关重要,其退化对公共卫生构成了重大挑战。虽然三维生物打印和组织工程学的最新进展显示了软骨再生的前景,但研究成果与临床应用之间仍存在差距。本综述批判性地研究了透明软骨的机械和生物特性,以及当前的三维制造方法和分析技术。此外,我们还对软骨组织工程中使用的生物墨水特性进行了定量综述。在对 181 项初步研究进行筛选后,我们对 33 项使用挤压生物打印技术的研究进行了分析和综合,结果表明了机械和生物评估所使用的主要材料、细胞和方法。总之,这篇综述推动了三维生物打印构建物的机械分析和生物材料评估的标准化,以明确其软骨生成潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tissue Engineering. Part B, Reviews
Tissue Engineering. Part B, Reviews Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
12.80
自引率
1.60%
发文量
150
期刊介绍: Tissue Engineering Reviews (Part B) meets the urgent need for high-quality review articles by presenting critical literature overviews and systematic summaries of research within the field to assess the current standing and future directions within relevant areas and technologies. Part B publishes bi-monthly.
期刊最新文献
Artificial Neural Networks: A New Frontier in Dental Tissue Regeneration. Efficacy of Fresh Versus Preserved Amniotic Membrane Grafts for Ocular Surface Reconstruction: Meta-analysis. Tissue Engineering Nasal Cartilage Grafts with Three-Dimensional Printing: A Comprehensive Review. Delivery Strategies of Growth Factors in Cartilage Tissue Engineering. Tissue-Engineered Three-Dimensional Platforms for Disease Modeling and Therapeutic Development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1