DELE1 maintains muscle proteostasis to promote growth and survival in mitochondrial myopathy.

IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY EMBO Journal Pub Date : 2024-11-01 Epub Date: 2024-10-08 DOI:10.1038/s44318-024-00242-x
Hsin-Pin Lin, Jennifer D Petersen, Alexandra J Gilsrud, Angelo Madruga, Theresa M D'Silva, Xiaoping Huang, Mario K Shammas, Nicholas P Randolph, Kory R Johnson, Yan Li, Drew R Jones, Michael E Pacold, Derek P Narendra
{"title":"DELE1 maintains muscle proteostasis to promote growth and survival in mitochondrial myopathy.","authors":"Hsin-Pin Lin, Jennifer D Petersen, Alexandra J Gilsrud, Angelo Madruga, Theresa M D'Silva, Xiaoping Huang, Mario K Shammas, Nicholas P Randolph, Kory R Johnson, Yan Li, Drew R Jones, Michael E Pacold, Derek P Narendra","doi":"10.1038/s44318-024-00242-x","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial dysfunction causes devastating disorders, including mitochondrial myopathy, but how muscle senses and adapts to mitochondrial dysfunction is not well understood. Here, we used diverse mouse models of mitochondrial myopathy to show that the signal for mitochondrial dysfunction originates within mitochondria. The mitochondrial proteins OMA1 and DELE1 sensed disruption of the inner mitochondrial membrane and, in response, activated the mitochondrial integrated stress response (mt-ISR) to increase the building blocks for protein synthesis. In the absence of the mt-ISR, protein synthesis in muscle was dysregulated causing protein misfolding, and mice with early-onset mitochondrial myopathy failed to grow and survive. The mt-ISR was similar following disruptions in mtDNA maintenance (Tfam knockout) and mitochondrial protein misfolding (CHCHD10 G58R and S59L knockin) but heterogenous among mitochondria-rich tissues, with broad gene expression changes observed in heart and skeletal muscle and limited changes observed in liver and brown adipose tissue. Taken together, our findings identify that the DELE1 mt-ISR mediates a similar response to diverse forms of mitochondrial stress and is critical for maintaining growth and survival in early-onset mitochondrial myopathy.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":"5548-5585"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574132/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-024-00242-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondrial dysfunction causes devastating disorders, including mitochondrial myopathy, but how muscle senses and adapts to mitochondrial dysfunction is not well understood. Here, we used diverse mouse models of mitochondrial myopathy to show that the signal for mitochondrial dysfunction originates within mitochondria. The mitochondrial proteins OMA1 and DELE1 sensed disruption of the inner mitochondrial membrane and, in response, activated the mitochondrial integrated stress response (mt-ISR) to increase the building blocks for protein synthesis. In the absence of the mt-ISR, protein synthesis in muscle was dysregulated causing protein misfolding, and mice with early-onset mitochondrial myopathy failed to grow and survive. The mt-ISR was similar following disruptions in mtDNA maintenance (Tfam knockout) and mitochondrial protein misfolding (CHCHD10 G58R and S59L knockin) but heterogenous among mitochondria-rich tissues, with broad gene expression changes observed in heart and skeletal muscle and limited changes observed in liver and brown adipose tissue. Taken together, our findings identify that the DELE1 mt-ISR mediates a similar response to diverse forms of mitochondrial stress and is critical for maintaining growth and survival in early-onset mitochondrial myopathy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DELE1 可维持肌肉蛋白稳态,促进线粒体肌病患者的生长和存活。
线粒体功能障碍会导致包括线粒体肌病在内的破坏性疾病,但人们对肌肉如何感知和适应线粒体功能障碍还不甚了解。在这里,我们利用不同的线粒体肌病小鼠模型证明,线粒体功能障碍的信号源自线粒体内部。线粒体蛋白 OMA1 和 DELE1 能感知线粒体内膜的破坏,并激活线粒体综合应激反应(mt-ISR)以增加蛋白质合成的基质。如果缺乏 mt-ISR,肌肉中的蛋白质合成就会失调,导致蛋白质错误折叠,早期线粒体肌病小鼠就无法生长和存活。在 mtDNA 维护(Tfam 基因敲除)和线粒体蛋白错误折叠(CHCHD10 G58R 和 S59L 基因敲除)中断后,mt-ISR 相似,但在线粒体丰富的组织中存在差异,在心脏和骨骼肌中观察到广泛的基因表达变化,而在肝脏和棕色脂肪组织中观察到有限的变化。综上所述,我们的研究结果表明,DELE1 mt-ISR 对不同形式的线粒体应激介导类似的反应,对维持早期线粒体肌病患者的生长和存活至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EMBO Journal
EMBO Journal 生物-生化与分子生物学
CiteScore
18.90
自引率
0.90%
发文量
246
审稿时长
1.5 months
期刊介绍: The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance. With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.
期刊最新文献
Ephrin A1 functions as a ligand of EGFR to promote EMT and metastasis in gastric cancer. The Shu complex interacts with the replicative helicase to prevent mutations and aberrant recombination. A novel human fetal lung-derived alveolar organoid model reveals mechanisms of surfactant protein C maturation relevant to interstitial lung disease. Elongator is a microtubule polymerase selective for polyglutamylated tubulin. Stable centromere association of the yeast histone variant Cse4 requires its essential N-terminal domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1