{"title":"Polylysine in biomedical applications: from composites to breakthroughs.","authors":"Deepak Arun Annamalai, Erina Hilaj, Manisha Singh, Manjunath C, Ahmed Raheem Rayshan, Manish Sharma, Pankaj Nainwal, Ambati Vijay Kumar, Alka N Choudhary","doi":"10.1088/1748-605X/ad8541","DOIUrl":null,"url":null,"abstract":"<p><p>Polylysine-based composites have emerged as promising materials in biomedical applications due to their versatility, biocompatibility, and tunable properties. In drug delivery, polylysine-based composites furnish a novel platform for targeted and controlled release of therapeutic agents. Their high loading capacity and capability to encapsulate diverse drugs make them ideal candidates for addressing challenges such as drug stability and controlled release kinetics. Additionally, their biocompatibility ensures minimal cytotoxicity, vital for biomedical applications. They also hold substantial potential in tissue engineering by providing a scaffold with tunable mechanical characteristics and surface properties, and can support cell adhesion, proliferation, and differentiation. Furthermore, their bioactive nature facilitates cellular interactions, promoting tissue regeneration and integration. Wound healing is another area where polylysine-based composites show promise. Their antimicrobial properties help prevent infections, while their ability to foster cell migration and proliferation accelerates the wound healing procedure. Incorporation of growth factors or other bioactive molecules further enhances their therapeutic effectiveness. In biosensing applications, they serve as robust substrates for immobilizing biomolecules and sensing elements. Their high surface area-to-volume ratio and excellent biocompatibility improve sensor sensitivity and selectivity, enabling accurate detection of biomarkers or analytes in biological samples. Polylysine-based composites offer potential as contrast agents in bioimaging, aiding in diagnosis and monitoring of diseases.
Overall, polylysine-based composites represent a versatile platform with diverse applications in biomedical research and clinical practice, holding great promise for addressing various healthcare challenges.
.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ad8541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Polylysine-based composites have emerged as promising materials in biomedical applications due to their versatility, biocompatibility, and tunable properties. In drug delivery, polylysine-based composites furnish a novel platform for targeted and controlled release of therapeutic agents. Their high loading capacity and capability to encapsulate diverse drugs make them ideal candidates for addressing challenges such as drug stability and controlled release kinetics. Additionally, their biocompatibility ensures minimal cytotoxicity, vital for biomedical applications. They also hold substantial potential in tissue engineering by providing a scaffold with tunable mechanical characteristics and surface properties, and can support cell adhesion, proliferation, and differentiation. Furthermore, their bioactive nature facilitates cellular interactions, promoting tissue regeneration and integration. Wound healing is another area where polylysine-based composites show promise. Their antimicrobial properties help prevent infections, while their ability to foster cell migration and proliferation accelerates the wound healing procedure. Incorporation of growth factors or other bioactive molecules further enhances their therapeutic effectiveness. In biosensing applications, they serve as robust substrates for immobilizing biomolecules and sensing elements. Their high surface area-to-volume ratio and excellent biocompatibility improve sensor sensitivity and selectivity, enabling accurate detection of biomarkers or analytes in biological samples. Polylysine-based composites offer potential as contrast agents in bioimaging, aiding in diagnosis and monitoring of diseases.
Overall, polylysine-based composites represent a versatile platform with diverse applications in biomedical research and clinical practice, holding great promise for addressing various healthcare challenges.
.