SpotGF: Denoising spatially resolved transcriptomics data using an optimal transport-based gene filtering algorithm.

Cell systems Pub Date : 2024-10-16 Epub Date: 2024-10-07 DOI:10.1016/j.cels.2024.09.005
Lin Du, Jingmin Kang, Yong Hou, Hai-Xi Sun, Bohan Zhang
{"title":"SpotGF: Denoising spatially resolved transcriptomics data using an optimal transport-based gene filtering algorithm.","authors":"Lin Du, Jingmin Kang, Yong Hou, Hai-Xi Sun, Bohan Zhang","doi":"10.1016/j.cels.2024.09.005","DOIUrl":null,"url":null,"abstract":"<p><p>Spatially resolved transcriptomics (SRT) combines gene expression profiles with the physical locations of cells in their native states but suffers from unpredictable spatial noise due to cell damage during cryosectioning and exposure to reagents for staining and mRNA release. To address this noise, we developed SpotGF, an algorithm for denoising SRT data using optimal transport-based gene filtering. SpotGF quantifies diffusion patterns numerically, distinguishing widespread expression genes from aggregated expression genes and filtering out the former as noise. Unlike conventional denoising methods, SpotGF preserves raw sequencing data, thereby avoiding false positives that can arise from imputation. Additionally, SpotGF demonstrates superior performance in cell clustering, identifying potential marker genes, and annotating cell types. Overall, SpotGF has the potential to become a crucial preprocessing step in the downstream analysis of SRT data. The SpotGF software is freely available at GitHub. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"969-981.e6"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2024.09.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spatially resolved transcriptomics (SRT) combines gene expression profiles with the physical locations of cells in their native states but suffers from unpredictable spatial noise due to cell damage during cryosectioning and exposure to reagents for staining and mRNA release. To address this noise, we developed SpotGF, an algorithm for denoising SRT data using optimal transport-based gene filtering. SpotGF quantifies diffusion patterns numerically, distinguishing widespread expression genes from aggregated expression genes and filtering out the former as noise. Unlike conventional denoising methods, SpotGF preserves raw sequencing data, thereby avoiding false positives that can arise from imputation. Additionally, SpotGF demonstrates superior performance in cell clustering, identifying potential marker genes, and annotating cell types. Overall, SpotGF has the potential to become a crucial preprocessing step in the downstream analysis of SRT data. The SpotGF software is freely available at GitHub. A record of this paper's transparent peer review process is included in the supplemental information.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SpotGF:使用基于传输的最优基因过滤算法对空间解析转录组学数据进行去噪处理。
空间分辨转录组学(SRT)将基因表达谱与细胞原生状态下的物理位置相结合,但由于细胞在冷冻切片过程中受损,以及暴露于染色和 mRNA 释放试剂中,会产生不可预测的空间噪声。为了解决这种噪声问题,我们开发了 SpotGF,这是一种利用基于最佳迁移的基因过滤对 SRT 数据进行去噪的算法。SpotGF 对扩散模式进行数值量化,区分广泛表达基因和聚集表达基因,并将前者作为噪声过滤掉。与传统的去噪方法不同,SpotGF 保留了原始测序数据,从而避免了因归因而产生的假阳性。此外,SpotGF 还在细胞聚类、识别潜在标记基因和注释细胞类型方面表现出卓越的性能。总之,SpotGF 有潜力成为 SRT 数据下游分析中的重要预处理步骤。SpotGF 软件可在 GitHub 上免费下载。本文的透明同行评审过程记录见补充信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Markov field network model of multi-modal data predicts effects of immune system perturbations on intravenous BCG vaccination in macaques. A three-node Turing gene circuit forms periodic spatial patterns in bacteria. Tracking the gene expression programs and clonal relationships that underlie mast, myeloid, and T lineage specification from stem cells. Optimized reporters for multiplexed detection of transcription factor activity. Classification and functional characterization of regulators of intracellular STING trafficking identified by genome-wide optical pooled screening.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1