Non-invasive Deep-Brain Imaging with 3D Integrated Photoacoustic Tomography and Ultrasound Localization Microscopy (3D-PAULM).

Yuqi Tang, Nanchao Wang, Zhijie Dong, Matthew Lowerison, Angela Del Aguila, Natalie Johnston, Tri Vu, Chenshuo Ma, Yirui Xu, Wei Yang, Pengfei Song, Junjie Yao
{"title":"Non-invasive Deep-Brain Imaging with 3D Integrated Photoacoustic Tomography and Ultrasound Localization Microscopy (3D-PAULM).","authors":"Yuqi Tang, Nanchao Wang, Zhijie Dong, Matthew Lowerison, Angela Del Aguila, Natalie Johnston, Tri Vu, Chenshuo Ma, Yirui Xu, Wei Yang, Pengfei Song, Junjie Yao","doi":"10.1109/TMI.2024.3477317","DOIUrl":null,"url":null,"abstract":"<p><p>Photoacoustic computed tomography (PACT) is a proven technology for imaging hemodynamics in deep brain of small animal models. PACT is inherently compatible with ultrasound (US) imaging, providing complementary contrast mechanisms. While PACT can quantify the brain's oxygen saturation of hemoglobin (sO2), US imaging can probe the blood flow based on the Doppler effect. Further, by tracking gas-filled microbubbles, ultrasound localization microscopy (ULM) can map the blood flow velocity with sub-diffraction spatial resolution. In this work, we present a 3D deep-brain imaging system that seamlessly integrates PACT and ULM into a single device, 3D-PAULM. Using a low ultrasound frequency of 4 MHz, 3D-PAULM is capable of imaging the brain hemodynamic functions with intact scalp and skull in a totally non-invasive manner. Using 3D-PAULM, we studied the mouse brain functions with ischemic stroke. Multi-spectral PACT, US B-mode imaging, microbubble-enhanced power Doppler (PD), and ULM were performed on the same mouse brain with intrinsic image co-registration. From the multi-modality measurements, we further quantified blood perfusion, sO2, vessel density, and flow velocity of the mouse brain, showing stroke-induced ischemia, hypoxia, and reduced blood flow. We expect that 3D-PAULM can find broad applications in studying deep brain functions on small animal models.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2024.3477317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Photoacoustic computed tomography (PACT) is a proven technology for imaging hemodynamics in deep brain of small animal models. PACT is inherently compatible with ultrasound (US) imaging, providing complementary contrast mechanisms. While PACT can quantify the brain's oxygen saturation of hemoglobin (sO2), US imaging can probe the blood flow based on the Doppler effect. Further, by tracking gas-filled microbubbles, ultrasound localization microscopy (ULM) can map the blood flow velocity with sub-diffraction spatial resolution. In this work, we present a 3D deep-brain imaging system that seamlessly integrates PACT and ULM into a single device, 3D-PAULM. Using a low ultrasound frequency of 4 MHz, 3D-PAULM is capable of imaging the brain hemodynamic functions with intact scalp and skull in a totally non-invasive manner. Using 3D-PAULM, we studied the mouse brain functions with ischemic stroke. Multi-spectral PACT, US B-mode imaging, microbubble-enhanced power Doppler (PD), and ULM were performed on the same mouse brain with intrinsic image co-registration. From the multi-modality measurements, we further quantified blood perfusion, sO2, vessel density, and flow velocity of the mouse brain, showing stroke-induced ischemia, hypoxia, and reduced blood flow. We expect that 3D-PAULM can find broad applications in studying deep brain functions on small animal models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用三维集成光声层析成像和超声定位显微镜(3D-PAULM)进行无创深部脑成像。
光声计算机断层扫描(PACT)是一种成熟的小动物模型脑深部血流动力学成像技术。光声计算机断层扫描与超声(US)成像具有内在兼容性,可提供互补的对比机制。PACT 可量化大脑血红蛋白的氧饱和度(sO2),而 US 成像可根据多普勒效应探测血流。此外,通过跟踪充满气体的微气泡,超声定位显微镜(ULM)能以亚衍射空间分辨率绘制血流速度图。在这项研究中,我们提出了一种三维脑深部成像系统,它将 PACT 和 ULM 无缝集成到一个设备中,即 3D-PAULM 系统。3D-PAULM 使用 4 MHz 的低超声频率,能够以完全无创的方式在头皮和头骨完好的情况下对大脑血流动力学功能进行成像。我们利用 3D-PAULM 研究了缺血性中风小鼠的脑功能。我们在同一只小鼠脑部进行了多光谱 PACT、美国 B 型成像、微泡增强功率多普勒(PD)和超低功耗成像,并进行了内在图像协同配准。通过多模态测量,我们进一步量化了小鼠大脑的血液灌注、血氧饱和度、血管密度和血流速度,显示了中风引起的缺血、缺氧和血流减少。我们期待 3D-PAULM 能在小动物模型的脑深部功能研究中得到广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Building a Synthetic Vascular Model: Evaluation in an Intracranial Aneurysms Detection Scenario. FAMF-Net: Feature Alignment Mutual Attention Fusion with Region Awareness for Breast Cancer Diagnosis via Imbalanced Data. Table of Contents Corrections to “Contrastive Graph Pooling for Explainable Classification of Brain Networks” Multi-Center Fetal Brain Tissue Annotation (FeTA) Challenge 2022 Results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1