Modeling protein-small molecule conformational ensembles with ChemNet.

Ivan Anishchenko, Yakov Kipnis, Indrek Kalvet, Guangfeng Zhou, Rohith Krishna, Samuel J Pellock, Anna Lauko, Gyu Rie Lee, Linna An, Justas Dauparas, Frank DiMaio, David Baker
{"title":"Modeling protein-small molecule conformational ensembles with ChemNet.","authors":"Ivan Anishchenko, Yakov Kipnis, Indrek Kalvet, Guangfeng Zhou, Rohith Krishna, Samuel J Pellock, Anna Lauko, Gyu Rie Lee, Linna An, Justas Dauparas, Frank DiMaio, David Baker","doi":"10.1101/2024.09.25.614868","DOIUrl":null,"url":null,"abstract":"<p><p>Modeling the conformational heterogeneity of protein-small molecule systems is an outstanding challenge. We reasoned that while residue level descriptions of biomolecules are efficient for de novo structure prediction, for probing heterogeneity of interactions with small molecules in the folded state an entirely atomic level description could have advantages in speed and generality. We developed a graph neural network called ChemNet trained to recapitulate correct atomic positions from partially corrupted input structures from the Cambridge Structural Database and the Protein Data Bank; the nodes of the graph are the atoms in the system. ChemNet accurately generates structures of diverse organic small molecules given knowledge of their atom composition and bonding, and given a description of the larger protein context, and builds up structures of small molecules and protein side chains for protein-small molecule docking. Because ChemNet is rapid and stochastic, ensembles of predictions can be readily generated to map conformational heterogeneity. In enzyme design efforts described here and elsewhere, we find that using ChemNet to assess the accuracy and pre-organization of the designed active sites results in higher success rates and higher activities; we obtain a preorganized retroaldolase with a <i>k</i> <sub>cat</sub>/<i>K</i> <sub>M</sub> of 11000 M<sup>-1</sup>min<sup>-1</sup>, considerably higher than any pre-deep learning design for this reaction. We anticipate that ChemNet will be widely useful for rapidly generating conformational ensembles of small molecule and small molecule-protein systems, and for designing higher activity preorganized enzymes.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463446/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.25.614868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modeling the conformational heterogeneity of protein-small molecule systems is an outstanding challenge. We reasoned that while residue level descriptions of biomolecules are efficient for de novo structure prediction, for probing heterogeneity of interactions with small molecules in the folded state an entirely atomic level description could have advantages in speed and generality. We developed a graph neural network called ChemNet trained to recapitulate correct atomic positions from partially corrupted input structures from the Cambridge Structural Database and the Protein Data Bank; the nodes of the graph are the atoms in the system. ChemNet accurately generates structures of diverse organic small molecules given knowledge of their atom composition and bonding, and given a description of the larger protein context, and builds up structures of small molecules and protein side chains for protein-small molecule docking. Because ChemNet is rapid and stochastic, ensembles of predictions can be readily generated to map conformational heterogeneity. In enzyme design efforts described here and elsewhere, we find that using ChemNet to assess the accuracy and pre-organization of the designed active sites results in higher success rates and higher activities; we obtain a preorganized retroaldolase with a k cat/K M of 11000 M-1min-1, considerably higher than any pre-deep learning design for this reaction. We anticipate that ChemNet will be widely useful for rapidly generating conformational ensembles of small molecule and small molecule-protein systems, and for designing higher activity preorganized enzymes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 ChemNet 建立蛋白质-小分子构象组合模型。
蛋白质-小分子系统的构象异质性建模是一项艰巨的挑战。我们认为,虽然残基级的生物大分子描述对于全新结构预测很有效,但对于探测折叠状态下与小分子相互作用的异质性,完全原子级的描述在速度和通用性方面都有优势。我们开发了一种名为 ChemNet 的图神经网络,经过训练可从剑桥结构数据库和蛋白质数据库中部分损坏的输入结构中重现正确的原子位置;图的节点是系统中的原子。根据对原子组成和键合的了解,以及对更大蛋白质背景的描述,ChemNet 能准确生成各种有机小分子的结构,并建立小分子和蛋白质侧链的结构,用于蛋白质-小分子对接。由于ChemNet具有快速和随机的特点,因此可以很容易地生成预测组合,以绘制构象异质性图。在这里和其他地方描述的酶设计工作中,我们发现使用ChemNet来评估设计活性位点的准确性和预组织会带来更高的成功率和活性;我们得到的预组织逆醛酸酶的k cat / K M为11000 M -1 min - 1,大大高于任何深度学习前设计的该反应。我们预计,ChemNet 将广泛用于快速生成小分子和小分子-蛋白质系统的构象组合,以及设计更高活性的预组织酶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cryo-electron tomography reveals coupled flavivirus replication, budding and maturation. Synapsin condensation is governed by sequence-encoded molecular grammars. Development and extensive sequencing of a broadly-consented Genome in a Bottle matched tumor-normal pair. Inconsistencies in the published rabbit ribosomal rRNAs: a proposal for uniformity in sequence and site numbering. Opening and closing of a cryptic pocket in VP35 toggles it between two different RNA-binding modes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1