Blockchain for Energy Credits and Certificates: A Comprehensive Review

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Sustainable Computing Pub Date : 2024-02-16 DOI:10.1109/TSUSC.2024.3366502
Syed Muhammad Danish;Kaiwen Zhang;Fatima Amara;Juan Carlos Oviedo Cepeda;Luis Fernando Rueda Vasquez;Tom Marynowski
{"title":"Blockchain for Energy Credits and Certificates: A Comprehensive Review","authors":"Syed Muhammad Danish;Kaiwen Zhang;Fatima Amara;Juan Carlos Oviedo Cepeda;Luis Fernando Rueda Vasquez;Tom Marynowski","doi":"10.1109/TSUSC.2024.3366502","DOIUrl":null,"url":null,"abstract":"Climate change is a major issue that has disastrous impacts on the environment through different causes like the greenhouse gas (GHG) emission. Many energy utilities around the world intend to reduce GHG emissions by promoting different systems including carbon emission trading (CET), renewable energy certificates (RECs), and tradable white certificates (TWCs). However, these systems are centralized, highly regulated, and operationally expensive and do not meet transparency, trust and security requirements. Accordingly, GHG emission reduction schemes are gradually moving towards blockchain-based solutions due to their underpinning characteristics including decentralization, transparency, anonymity, and trust (independent from third parties). This paper performs a comprehensive investigation into the blockchain technology, deployed for GHG emission reduction plans. It explores existing blockchain solutions along with their associated challenges to effectively uncover their potentials. As a result, this study suggests possible lines of research for future enhancements of blockchain systems particularly their incorporation in GHG emission reduction.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 5","pages":"727-739"},"PeriodicalIF":3.0000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10438884/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change is a major issue that has disastrous impacts on the environment through different causes like the greenhouse gas (GHG) emission. Many energy utilities around the world intend to reduce GHG emissions by promoting different systems including carbon emission trading (CET), renewable energy certificates (RECs), and tradable white certificates (TWCs). However, these systems are centralized, highly regulated, and operationally expensive and do not meet transparency, trust and security requirements. Accordingly, GHG emission reduction schemes are gradually moving towards blockchain-based solutions due to their underpinning characteristics including decentralization, transparency, anonymity, and trust (independent from third parties). This paper performs a comprehensive investigation into the blockchain technology, deployed for GHG emission reduction plans. It explores existing blockchain solutions along with their associated challenges to effectively uncover their potentials. As a result, this study suggests possible lines of research for future enhancements of blockchain systems particularly their incorporation in GHG emission reduction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于能源积分和证书的区块链:全面回顾
气候变化是一个重大问题,它通过温室气体排放等不同原因对环境造成灾难性影响。全球许多能源公用事业公司打算通过推广不同的系统来减少温室气体排放,包括碳排放交易(CET)、可再生能源证书(RECs)和可交易白色证书(TWCs)。然而,这些系统都是集中式的,受到高度管制,运行成本高,而且不符合透明度、信任度和安全性的要求。因此,温室气体减排计划正逐渐转向基于区块链的解决方案,因为区块链具有去中心化、透明、匿名和信任(独立于第三方)等基本特征。本文对用于温室气体减排计划的区块链技术进行了全面调查。它探讨了现有的区块链解决方案及其相关挑战,以有效发掘其潜力。因此,本研究为区块链系统未来的改进,特别是将其纳入温室气体减排提出了可能的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
期刊最新文献
Editorial Dynamic Event-Triggered State Estimation for Power Harmonics With Quantization Effects: A Zonotopic Set-Membership Approach 2024 Reviewers List Deadline-Aware Cost and Energy Efficient Offloading in Mobile Edge Computing Impacts of Increasing Temperature and Relative Humidity in Air-Cooled Tropical Data Centers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1