Implicit Function Based Open-Loop Analysis Method for Detecting the SSR Using Identified System Parameters

IF 6.9 2区 工程技术 Q2 ENERGY & FUELS CSEE Journal of Power and Energy Systems Pub Date : 2023-11-17 DOI:10.17775/CSEEJPES.2021.05480
Luonan Qiu;Tianhao Wen;Yang Liu;Q. H. Wu
{"title":"Implicit Function Based Open-Loop Analysis Method for Detecting the SSR Using Identified System Parameters","authors":"Luonan Qiu;Tianhao Wen;Yang Liu;Q. H. Wu","doi":"10.17775/CSEEJPES.2021.05480","DOIUrl":null,"url":null,"abstract":"This paper proposes an implicit function based open-loop analysis method to detect the subsynchronous resonance(SSR), including asymmetric subsynchronous modal attraction(ASSMA) and asymmetric subsynchronous modal repulsion(ASSMR), of doubly-fed induction generator based wind farms(DFIG-WFs) penetrated power systems. As some important parameters of DFIG-WF are difficult to obtain, reinforcement learning and least squares method are applied to identify those important parameters. By predicting the location of closed-loop subsynchronous oscillation(SSO) modes based on the calculation of partial differentials of characteristic equation, both ASSMA and ASSMR can be found. The proposed method in this paper can select SSO modes which move to the right half complex planes as control parameters change. Besides, the proposed open-loop analysis method is adaptive to parameter uncertainty. Simulation studies are carried out on the 4-machine 11-bus power system to verify properties of the proposed method.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 5","pages":"2016-2026"},"PeriodicalIF":6.9000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10322704","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10322704/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an implicit function based open-loop analysis method to detect the subsynchronous resonance(SSR), including asymmetric subsynchronous modal attraction(ASSMA) and asymmetric subsynchronous modal repulsion(ASSMR), of doubly-fed induction generator based wind farms(DFIG-WFs) penetrated power systems. As some important parameters of DFIG-WF are difficult to obtain, reinforcement learning and least squares method are applied to identify those important parameters. By predicting the location of closed-loop subsynchronous oscillation(SSO) modes based on the calculation of partial differentials of characteristic equation, both ASSMA and ASSMR can be found. The proposed method in this paper can select SSO modes which move to the right half complex planes as control parameters change. Besides, the proposed open-loop analysis method is adaptive to parameter uncertainty. Simulation studies are carried out on the 4-machine 11-bus power system to verify properties of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用已识别系统参数检测 SSR 的基于隐函数的开环分析方法
本文提出了一种基于隐函数的开环分析方法,用于检测穿透式双馈异步发电机风电场(DFIG-WFs)电力系统的次同步谐振(SSR),包括非对称次同步模态吸引(ASSMA)和非对称次同步模态排斥(ASSMR)。由于 DFIG-WF 的一些重要参数难以获得,因此采用了强化学习和最小二乘法来确定这些重要参数。通过基于特征方程偏微分计算预测闭环次同步振荡(SSO)模式的位置,可以找到 ASSMA 和 ASSMR。本文提出的方法可以选择随控制参数变化而向右半复平面移动的 SSO 模式。此外,本文提出的开环分析方法还能适应参数的不确定性。本文对 4 机 11 总线电力系统进行了仿真研究,以验证所提方法的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.80
自引率
12.70%
发文量
389
审稿时长
26 weeks
期刊介绍: The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.
期刊最新文献
Transient Voltage Support Strategy of Grid-Forming Medium Voltage Photovoltaic Converter in the LCC-HVDC System Front Cover Contents PFL-DSSE: A Personalized Federated Learning Approach for Distribution System State Estimation Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1