Ayman Morsy;Cédric Baijot;Gobinath Jegannathan;Thomas Lapauw;Thomas Van den Dries;Maarten Kuijk
{"title":"An In-Pixel Ambient Suppression Method for Direct Time of Flight","authors":"Ayman Morsy;Cédric Baijot;Gobinath Jegannathan;Thomas Lapauw;Thomas Van den Dries;Maarten Kuijk","doi":"10.1109/LSENS.2024.3453038","DOIUrl":null,"url":null,"abstract":"This letter proposes a novel single photon avalanche diode (SPAD)-based pixel, designed for direct Time-of-Flight (ToF) imaging with in-pixel averaging, which provides a promising advancement in low-power and potentially high image resolution for outdoor applications. By utilizing a laser pulse and two orthogonal sinusoidal signals, the pixel averages out the detected ambient light while accumulating the laser pulse round-trip time. A prototype pixel array was fabricated using a 180 nm CMOS process, featuring a commercial SPAD cell. By characterizing one pixel and employing a 100 klux solar emulator as an ambient light source with a fixed 40 ambient-to-signal ratio over a 360\n<inline-formula><tex-math>$^{\\circ }$</tex-math></inline-formula>\n phase shift, equivalent to 6 m detection range, the maximum detected accuracy error was 3.3%, with a 5 cm precision.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 10","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10663241/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This letter proposes a novel single photon avalanche diode (SPAD)-based pixel, designed for direct Time-of-Flight (ToF) imaging with in-pixel averaging, which provides a promising advancement in low-power and potentially high image resolution for outdoor applications. By utilizing a laser pulse and two orthogonal sinusoidal signals, the pixel averages out the detected ambient light while accumulating the laser pulse round-trip time. A prototype pixel array was fabricated using a 180 nm CMOS process, featuring a commercial SPAD cell. By characterizing one pixel and employing a 100 klux solar emulator as an ambient light source with a fixed 40 ambient-to-signal ratio over a 360
$^{\circ }$
phase shift, equivalent to 6 m detection range, the maximum detected accuracy error was 3.3%, with a 5 cm precision.