Nicholas R. Jungwirth;Meagan C. Papac;Bryan T. Bosworth;Aaron M. Hagerstrom;Eric J. Marksz;Jerome Cheron;Kassiopeia Smith;Angela C. Stelson;Ari Feldman;Dylan F. Williams;Christian J. Long;Nathan D. Orloff
{"title":"Demonstrating Broadside-Coupled Coplanar Waveguide Interconnects to 325 GHz","authors":"Nicholas R. Jungwirth;Meagan C. Papac;Bryan T. Bosworth;Aaron M. Hagerstrom;Eric J. Marksz;Jerome Cheron;Kassiopeia Smith;Angela C. Stelson;Ari Feldman;Dylan F. Williams;Christian J. Long;Nathan D. Orloff","doi":"10.1109/LMWT.2024.3440831","DOIUrl":null,"url":null,"abstract":"We demonstrate three different broadside-coupled coplanar waveguides (CPWs) to 325 GHz that do not require bump bonds, wire bonds, or direct metal-to-metal bonding. Our design approach used a multimoded distributed theory rather than the conventional \n<inline-formula> <tex-math>$\\lambda /4 $ </tex-math></inline-formula>\n approximation. The different interconnects had insertion losses better than 0.7 dB at 63, 93, and 120 GHz.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"34 10","pages":"1147-1150"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10637793","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10637793/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate three different broadside-coupled coplanar waveguides (CPWs) to 325 GHz that do not require bump bonds, wire bonds, or direct metal-to-metal bonding. Our design approach used a multimoded distributed theory rather than the conventional
$\lambda /4 $
approximation. The different interconnects had insertion losses better than 0.7 dB at 63, 93, and 120 GHz.